Free and Projective algebras in the variety of monadic perfect $M V$-algebras

Antonio Di Nola ${ }^{1}$, Revaz Grigolia ${ }_{2}$, Ramaz Liparteliani ${ }^{3}$

13.10.2016

Abstract

A description and characterization of finitely generated free and projective monadic $M V$-alge-bras ($M M V(C)$-algebras) in the variety generated by monadic perfect $M V$-algebras is given. Finitely generated subdirectly irreducible $M M V(C)$-algebras are described.

Key Words and Phrases: $M V$-algebras, monadic $M V$-algebras, perfect $M V$-algebras.

1 Introduction

The finitely valued propositional calculi, which have been described by Łukasiewicz and Tarski in [16], are extended to the corresponding predicate calculi. The predicate Łukasiewicz (infinitely valued) logic $Q L$ is defined in the following standard way. The existential (universal) quantifier is interpreted as supremum (infimum) in a complete $M V$-algebra. Then the valid formulas of predicate calculus are defined as all formulas having value 1 for any assignment. The functional description of the predicate calculus is given by Rutledge in [20]. Scarpellini in [21] has proved that the set of valid formulas is not recursively enumerable.

[^0]$M V$-algebras are the algebraic counterpart of the infinite valued Łukasiewicz sentential calculus, as Boolean algebras are with respect to the classical propositional logic. In contrast to what happens for Boolean algebras, there are $M V$-algebras which are not semisimple, i.e. the intersection of their maximal ideals (the radical of $M V$-algebra A) is different from $\{0\}$. Non-zero elements from the radical of A are called infinitesimals. Perfect $M V$-algebras are those $M V$-algebras generated by their infinitesimal elements or, equivalently, generated by their radical [4]. The logic of perfect $M V$-algebras that coincides with the set of all Łukasiewicz formulas that are valid in all perfect $M V$-chains, see [4].

The importance of the variety generated by perfect $M V$-algebras and corresponding to it logic can be perceived by looking further at the role that infinitesimals play in $M V$-algebras and Łukasiewicz logic. Indeed the pure first order Łukasiewicz predicate logic is not complete with respect to the canonical set of truth values $[0,1]$, see $[3,21]$. The Lindenbaum algebra of the first order LŁukasiewicz logic is not semisimple and the valid but unprovable formulas are precisely the formulas whose negations determine the radical of the Lindenbaum algebra, that is the co-infinitesimals of such algebra. Hence, the valid but unprovable formulas generate the perfect skeleton of the Lindenbaum algebra. So, perfect $M V$-algebras, the variety generated by them and their logic are intimately related with a crucial phenomenon of the first order Łukasiewicz logic.

Monadic $M V$-algebras were introduced and studied by Rutledge in [20] as an algebraic model for the predicate calculus $Q L$ of Łukasiewicz infinitevalued logic, in which only a single individual variable occurs. Rutledge followed P.R. Halmos' study of monadic Boolean algebras. In view of the incompleteness of the predicate calculus the result of Rutledge in [20], showing the completeness of the monadic predicate calculus, has been of great interest.

Let L denote a first-order language based on $\cdot,+, \rightarrow, \neg, \exists$ and let L_{m} denote a propositional language based on $\cdot,+, \rightarrow, \neg, \exists$. Let $\operatorname{Form}(L)$ and $\operatorname{Form}\left(L_{m}\right)$ be the set of all formulas of L and L_{m}, respectively. We fix a variable x in L, associate with each propositional letter p in L_{m} a unique monadic predicate $p^{*}(x)$ in L and define by induction a translation $\Psi: \operatorname{Form}\left(L_{m}\right) \rightarrow$ $\operatorname{Form}(L)$ by putting:

- $\Psi(p)=p^{*}(x)$ if p is propositional variable,
- $\Psi(\alpha \circ \beta)=\Psi(\alpha) \circ \Psi(\beta)$, where $\circ=\cdot,+, \rightarrow$,

$$
\text { - } \Psi(\exists \alpha)=\exists x \Psi(\alpha)
$$

Through this translation Ψ, we can identify the formulas of L_{m} with monadic formulas of L containing the variable x.

For a detailed consideration of Łukasiewicz predicate calculus we refer to $[1,3,12,15,16,22,23]$.

The paper is devoted to study of problems of projectivity and unification in he variety generated by monadic perfect $M V$-algebras. For this aim a description of finitely generated free algebras is given (Sections 3 and4). The characterization of finitely generated projective algebras in the variety generated by monadic perfect $M V$-algebras and and correspondence of projective algebras and projective formulas are given (Sections 5 and 6).

2 Preliminaries on Monadic $M V$-algebras

The characterization of monadic $M V$-algebras as pair of $M V$-algebras, where one of them is a special kind of subalgebra (m-relatively complete subalgebra), is given in [7,5]. $M V$-algebras were introduced by Chang in [6] as an algebraic model for infinitely valued Łukasiewicz logic.

An $M V$-algebra is an algebra $A=\left(A, \oplus, \otimes,{ }^{*}, 0,1\right)$ where $(A, \oplus, 0)$ is an abelian monoid, and the following identities hold for all $x, y \in A: x \oplus 1=1$, $x^{* *}=x, 0^{*}=1, x \oplus x^{*}=1,\left(x^{*} \oplus y\right)^{*} \oplus y=\left(y^{*} \oplus x\right)^{*} \oplus x, x \otimes y=\left(x^{*} \oplus y^{*}\right)^{*}$.

Every $M V$-algebra has an underlying ordered structure defined by

$$
x \leq y \text { iff } x^{*} \oplus y=1
$$

$(A, \leq, 0,1)$ is a bounded distributive lattice. Moreover, the following property holds in any $M V$-algebra:

$$
x \otimes y \leq x \wedge y \leq x \vee y \leq x \oplus y
$$

The unit interval of real numbers $[0,1]$ endowed with the following operations: $x \oplus y=\min (1, x+y), x \otimes y=\max (0, x+y-1), x^{*}=1-x$, becomes an $M V$-algebra. It is well known that the $M V$-algebra $S=\left([0,1], \oplus, \otimes,{ }^{*}, 0,1\right)$ generates the variety MV of all $M V$-algebras, i. e. $\mathcal{V}(S)=\mathbf{M V}$.

Let Q denote the set of rational numbers; then $[0,1] \cap Q$ is another $M V$ algebra, which also generates the variety MV.

An algebra $A=\left(A, \oplus, \otimes,{ }^{*}, \exists, 0,1\right)$ is said to be a monadic $M V$-algebra ($M M V$-algebra for short) $[20,7]$ if $A=\left(A, \oplus, \otimes,{ }^{*}, 0,1\right)$ is an $M V$-algebra and in addition \exists satisfies the following identities:

E1. $x \leq \exists x$,
E2. $\exists(x \vee y)=\exists x \vee \exists y$,
E3. $\exists(\exists x)^{*}=(\exists x)^{*}$,
E4. $\exists(\exists x \oplus \exists y)=\exists x \oplus \exists y$,
E5. $\exists(x \otimes x)=\exists x \otimes \exists x$,
E6. $\exists(x \oplus x)=\exists x \oplus \exists x$.
Sometimes we shall denote a monadic $M V$-algebra $A=\left(A, \oplus, \otimes,{ }^{*}, \exists, 0,1\right)$ by (A, \exists), for brevity. We can define a unary operation $\forall x=\left(\exists x^{*}\right)^{*}$ corresponding to the universal quantifier.

From the variety of monadic $M V$-algebras MMV [7] select the subvariety $\operatorname{MMV}(\mathbf{C})$ which is defined by the following equation [10]:

$$
(\text { Perf }) 2\left(x^{2}\right)=(2 x)^{2},
$$

that is $\mathbf{M M V}(\mathbf{C})=\mathbf{M M V}+(\operatorname{Perf})$. The main object of our interest are the varieties $\mathbf{M M V}(\mathbf{C})$.

An ideal I (a filter F) of an algebra $(A, \exists) \in$ MMV is called monadic ideal (filter) (see [R, DG]), if $I(F)$ is an ideal (a filter) of $M V$-algebra A (i.e. $A \supset I \neq \emptyset(A \supset F \neq \emptyset)$ and for every $x, y \in I(x, y \in F)$ (a) $x \oplus y \in I$ $(x \otimes y \in F) ;(\mathrm{b}) x \geq y, x \in I \Rightarrow y \in I(x \leq y, x \in F \Rightarrow y \in F))$ and for every $a \in A$ we have $a \in I \Rightarrow \exists a \in I(a \in F \Rightarrow \forall a \in F)$. Notice that if $I(F)$ is a monadic ideal (filter) of (A, \exists), the the set $\{\neg x: x \in I\}(\{\neg x: x \in F\})$ is a monadic filter (ideal).

For every monadic $M V$-algebra (A, \exists), there exists a lattice isomorphism between the lattice of all monadic ideals (filters) and the lattice of all congruence relations of $(A, \exists)[7]$.

Perfect $M V$-algebras are those $M V$-algebras generated by their infinitesimal elements or, equivalently, generated by their radical [4]. They generate the smallest non locally finite subvariety of the variety MV of all MValgebras.

It is worth stressing that the variety generated by all perfect $M V$-algebras, denoted by $\mathbf{M V}(\mathbf{C})$, is also generated by a single $M V$-chain, actually the $M V$-algebra C, defined by Chang in [6]. We name $M V(C)$-algebras all the algebras from the variety generated by C. Let L_{P} be the logic corresponding
to the variety generated by perfect algebras which coincides with the set of all Łukasiewicz formulas that are valid in all perfect $M V$-chains, or equivalently that are valid in the $M V$-algebra C. Actually, L_{P} is the logic obtained by adding to the axioms of Łukasiewicz sentential calculus the following axiom: $(x \underline{\vee} x) \&(x \underline{\vee} x) \leftrightarrow(x \& x) \underline{\vee}(x \& x)$ (where $\underline{\vee}$ is strong disjunction, \& strong conjunction in Łukasiewicz sentential calculus), see [4]. Notice that C is a subalgebra of any non-Boolean perfect $M V$-algebra.

As it is well known, $M V$-algebras form a category that is equivalent to the category of abelian lattice ordered groups (ℓ-groups, for short) with strong unit [18]. Let us denote by Γ the functor implementing this equivalence. If G is an ℓ-group, then for any element $u \in G, u>0$ we let $[0, u]=\{x \in G$: $0 \leq x \leq u\}$ and for each $x, y \in[0, u] \quad x \oplus y=u \wedge(x+y)$ and $\neg x=u-x$. In particular each perfect $M V$-algebra is associated with an abelian ℓ-group with a strong unit.

Let us introduce some notations: let $C_{0}=\Gamma(Z, 1), C_{1}=C \cong \Gamma\left(Z \times_{\text {lex }}\right.$ $Z,(1,0))$ with generator $(0,1)=c_{1}(=c), C_{m}=\Gamma\left(Z \times_{\text {lex }} \cdots \times_{\text {lex }} Z,(1,0, \ldots, 0)\right)$ with generators $c_{1}(=(0,0, \ldots, 1)), \ldots, c_{m}(=(0,1, \ldots, 0))$, where the number of factors Z is equal to $m+1$ and $\times_{l e x}$ is the lexicographic product and Γ is well-known Mundici's functor translating a lattice ordered group with strong unit into $M V$-algebra. Let us denote $\operatorname{Rad}(A) \cup \neg \operatorname{Rad}(A)$ through $R^{*}(A)$, where $\neg \operatorname{Rad}(A)=\left\{x^{*}: x \in \operatorname{Rad}(A)\right.$.

Let $\left(A, \oplus, \otimes,{ }^{*}, \exists, 0,1\right)$ be a monadic $M V$-algebra. Let $\exists A=\{x \in A: x=$ $\exists x\} .\left(\exists A, \oplus, \otimes,{ }^{*}, 0,1\right)$ is an $M V$-subalgebra of the $M V$-algebra $\left(A, \oplus, \otimes,{ }^{*}, 0,1\right)$, which is m-relatively complete subalgebra [7]. Any m-relatively complete subalgebra A_{0} of the $M V$-algebra A defines a monadic operator \exists on A : $\exists x=\bigwedge\left\{y \in A_{0}: y \geq x\right\}[7]$. Notice that two-element subalgebra of C (which is Boolean algebra)is not m-relatively complete. Indeed, for any element a RadC we have $a \otimes a=0, \exists a=1$. But in this case $0=\exists(a \otimes a) \neq$ $\exists a \otimes \exists a=1$, and it does not satisfies the axiom E5.

3 One-generated free monadic $M M V(C)$-algebras

According to the definition of monadic $M V$-algebras m-relatively complete subalgebra of C coincides with C but not its two-element Boolean subalgebra. In other words, (C, \exists) is monadic $M M V(C)$-algebra if $\exists x=x$. Let we have
C^{n} for some non-negative integer. Then $\left(C^{n}, \exists\right)$ will be $M M V(C)$-algebra, where $\exists\left(a_{1}, \ldots, a_{n}\right)=\max \left\{a_{1}, \ldots, a_{n}\right\}$ and $\forall\left(a_{1}, \ldots, a_{n}\right)=\min \left\{a_{1}, \ldots, a_{n}\right\}$. In this case $\exists\left(C^{n}\right)=\left\{(x, \ldots, x) \in C^{n}: x \in C\right\}$. Notice, that $\left(C^{n}, \exists\right)$ is subdirectly irreducible [7]. For perfect $M V$-algebra $\operatorname{Rad}^{*}\left(C^{2}\right)$ we also have $\exists\left(C^{n}\right)=\left\{(x, \ldots, x) \in C^{n}: x \in C\right\} \subset \operatorname{Rad}^{*}\left(C^{2}\right)$.

Now we shall give examples of one-generated $M M V(C)$-algebras and show that there are infinitely many one generated subdirectly irreducible $M M V(C)$-algebras unlike the one generated subdirectly irreducible $M V(C)$ algebras which is only one (up to isomorphism) subdirectly irreducible $M V(C)$ algebra C.

Lemma 1. The following algebras are one-generated subdirectly irreducible MMV (C)-algebras:

1) $(\mathbf{2}, \exists)$ with generator either 1 or 0 , where $\mathbf{2}$ is two-element Boolean algebra,
2) $\left(\mathbf{2}^{2}, \exists\right)$ with generator either $(0,1)$ or $(1,0)$, where $\mathbf{2}^{2}$ is four-element Boolean algebra,
3) (C, \exists) with generator either c or $\neg c$,
4) $\left(C^{2}, \exists\right)$ with generator either $(1, c),(\neg c, 0)$ or $(c, \neg c)$,
5) $\left(\operatorname{Rad}^{*}\left(C^{2}\right), \exists\right)$ with generator either $(c, 0)$ or $(\neg c, 1)$,
6) (C_{2}^{2}, \exists) with generator either $\left(c_{1}, \neg c_{2}\right)$ or $\left(\neg c_{1}, c_{2}\right)$,
7) $\left(\operatorname{Rad}^{*}\left(C_{2}^{2}\right), \exists\right)$ generated by $\left(c_{1}, c_{2}\right)$ or $\left(\neg c_{1}, \neg c_{2}\right)$.

Proof. 1), 2) and 3) is trivial.
4) (a) $\forall(1, c)=(c, c), g^{2}=(1,0),(c, c) \vee(0,1)=(c, 1)$. So, $\left(C^{2}, \exists\right)$ is generated by $(1, c)$; (b) $2(\neg c, 0)=(1,0), \neg(\neg c, 0)=(c, 1),(c, 1)^{2}=(0,1)$. So, $\left(C^{2}, \exists\right)$ is generated by $(\neg c, 0)$; (c) $2\left((c, \neg c)^{2}\right)=(0,1), \neg(0,1)=(1,0)$, $\forall(c, \neg c)=(c, c)$. So, $\left(C^{2}, \exists\right)$ is generated by $(c, \neg c)$;
5) $\exists(c, 0)=(c, c), \neg(c, 0)=(\neg c, 1),(c, c) \rightarrow(c, 0)=(1, \neg c), \neg(1, \neg c)=$ $(0, c)$. So, $\left(\operatorname{Rad}^{*}\left(C^{2}\right), \exists\right)$ is generated by either $(c, 0)$ or $(\neg c, 1)$.
6) Let $g=\left(c_{1}, \neg c_{2}\right) .2 g^{2}=(0,1), \neg\left(2 g^{2}\right)=(1,0) . \forall g=\left(c_{1} \cdot c_{1}, \neg \exists g=\right.$ $\left(c_{2}, c_{2}\right) ; \forall g \wedge 2 g^{2}=\left(0, c_{1}\right) ; \forall g \wedge \neg\left(2 g^{2}\right)=\left(c_{1}, 0\right) ; \neg \exists g \wedge 2 g^{2}=\left(0, c_{2}\right) ; \neg \exists g \wedge$ $\neg\left(2 g^{2}\right)=\left(c_{2}, 0\right)$. In a similar way it is shown that $\left(C_{2}^{2}, \exists\right)$ is generated by $\left(\neg c_{1}, c_{2}\right)(=\neg g)$.
7) Let $g=\left(c_{1}, c_{2}\right)$. From this element we obtain the following sequences of elements: $\forall g=\left(c_{1}, c_{1}\right), \exists g=\left(c_{2}, c_{2}\right), \neg \forall g=\left(\neg c_{1}, \neg c_{1}\right), \neg \exists g=\left(\neg c_{2}, \neg c_{2}\right)$; $\neg \exists g \oplus g=\left(\neg c_{2}, \neg c_{2}\right) \oplus\left(c_{1}, c_{2}\right)=\left(\neg c_{2} \oplus c_{1}, 1\right), \neg g \oplus \forall g=\left(\neg c_{1}, \neg c_{2}\right) \oplus$ $\left(c_{1}, c_{1}\right)=\left(1, \neg c_{2} \oplus c_{1}\right) ;(\neg \exists g \oplus g) \otimes \forall g=\left(\neg c_{2} \oplus c_{1}, 1\right) \otimes\left(c_{1}, c_{1}\right)=\left(0, c_{1}\right)$,
$\left.(\neg g \oplus \forall g) \otimes \forall g=\left(c_{1}, 0\right) ;(\neg \exists g \oplus g) \otimes \neg \forall g\right)=\left(c_{2}, c_{1}\right), \neg\left(\neg\left(c_{2}, c_{1}\right) \oplus\left(0, c_{1}\right)\right)=$ $\left(c_{2}, 0\right), \neg\left(\neg\left(c_{1}, c_{2}\right) \oplus\left(c_{1}, 0\right)\right)=\left(0, c_{2}\right)$. From these elements we can obtain all elements of radical of $\left(C_{2}^{2}, \exists\right)$ and thereby the elements of perfect algebra.

Notice that $\left(C_{n}, \exists\right)$ is not 1-generated for $n \geq 2$, since $\exists x=x$ for every $x \in C_{n}$ and C_{n} is not one-generated. It is clear that $\left(2^{n}, \exists\right)$ is a homomorphic image of $\left(C^{n}, \exists\right)$. But $\left(2^{n}, \exists\right)$ is not generated by one generator for $n \geq 3$. Indeed, for any element $x \in 2^{n}$ the operation \exists is defined as follows: $\exists x=$ $(1, \ldots 1,1) \in \mathbf{2}^{n}$ if $x \neq(0,0, \ldots, 0) \in \mathbf{2}^{\mathbf{n}}$ and $\exists x=(0, \ldots 0,0) \in \mathbf{2}^{n}$ in other case. So, $\left(2^{n}, \exists\right)$ is one-generated if it is one-generated using only Boolean operations. But $\mathbf{2}^{n}$ is not generated by one generator if $n \geq 3$.

Fig. 1. Spectral spaces of one-generated subdirectly irreducible $M V(C)$-algebras

In Fig. 1 are depicted ordered sets corresponding to the prime filter spaces for $(C, \exists)\left(\cong T_{1} \cong T_{2}\right),\left(C^{2}, \exists\right)\left(\cong T_{3} \cong T_{4} \cong T_{5}\right),\left(\operatorname{Rad}^{*}\left(C^{2}\right), \exists\right)\left(\cong T_{6} \cong\right.$ $\left.T_{7}\right),\left(C_{2}^{2}, \exists\right)\left(\cong T_{8} \cong T_{9}\right),\left(\operatorname{Rad}^{*}\left(C_{2}^{2}\right), \exists\right)\left(\cong T_{10} \cong T_{11}\right)$ with their generators. Notice that the algebras $T_{1}, T_{2}, \ldots, T_{7}$ have height 2 and the algebras $T_{8}, T_{9}, T_{10}, T_{11}$ have height 3 (the definition of height see below).

Let us give some comments about the diagrams in Fig. 1. The posets I, II, VI, VII, X and XI have one maximal filter, i. e. they correspond to a perfect $M V$-algebras. As to III, IV, V, VII and IX the elements being inside ovals we can consider as equivalent elements and this equivalence relation corresponds to the \exists operation on a corresponding $M V$-algebra which corresponds to the diagonal subalgebra of C^{2} and C_{2}^{2} respectively.

We say that $M V$-algebra A has height n if a maximal chain of the poset of prime filters (ordered by inclusion) contains n elements. Similarly, we say that $M M V(C)$-algebra A has height n if its $M V$-algebra reduct has height n. According to this definition $M V$-algebra C_{n} has height $n+1(n \geq 1)$.

Lemma 2. If subdirectly irreducible $M M V(C)$-algebra, with non-trivial operation \exists, has height $n>3$, then it is not one-generated.

Proof. Let us suppose we have $M M V(C)$-algebra $\left(C_{3}^{2}, \exists\right)$. The optimal version to be a generator of $\left(C_{3}^{2}, \exists\right)$ is either $\left(c_{1}, c_{2}\right),\left(c_{2}, c_{3}\right),\left(c_{1}, c_{3}\right),\left(c_{1}, \neg c_{2}\right)$, $\left(c_{1}, \neg c_{3}\right),\left(\neg c_{1}, c_{2}\right),\left(\neg c_{1}, c_{3}\right),\left(\neg c_{2}, c_{3}\right),\left(c_{2}, \neg c_{3}\right),\left(c_{2}, \neg c_{1}\right),\left(c_{3}, \neg c_{2}\right)$. It is obvious that none of them generates the algebra $\left(C_{3}^{2}, \exists\right)$. Even more so $\left(C_{n}^{k}, \exists\right)$ is not generated by one generator for $k, n>2$.

The next lemma shows that there are infinitely many non-isomorphic one-generated subdirectly irreducible $M M V(C)$-algebras.

Lemma 3. The MMV (C)-algebra $\left(\operatorname{Rad}^{*}\left(C^{n}\right), \exists\right)$ is generated by the element $(c, 2 c, \ldots, n c)$ for any positive integer n.

Proof. Let $g=(c, 2 c, \ldots, n c)$. Then $\forall g=(c, c, \ldots, c), \neg \forall g=(\neg c, \neg c, \ldots, \neg c)$, $g \otimes \neg \forall g=(0, c, 2 c, \ldots,(n-1) c), g \otimes(\neg \forall g)^{2}=(0,0, c, 2 c, \ldots,(n-2) c), \ldots$, $g \otimes(\neg \forall g)^{n-1}=(0,0, \ldots, 0, c)$.
$(g \otimes \neg \forall g) \wedge \forall g=(0, c, \ldots, c), \neg\left(g \otimes(\neg \forall g)^{2}\right) \otimes((g \otimes \neg \forall g) \wedge \forall g)=(1,1, \neg c, \ldots$, $\left.(\neg c)^{n-2}\right) \otimes(0, c, \ldots, c)=(0, c, 0, \ldots, 0)$.
$\left(g \otimes(\neg \forall g)^{2}\right) \wedge \forall g=(0,0, c, \ldots, c) . \neg\left(g \otimes(\neg \forall g)^{3}\right)=\left(1,1,1, \neg c,(\neg c)^{2}, \ldots,(\neg c)^{n-3}\right)$. $\left(1,1,1, \neg c,(\neg c)^{2}, \ldots,(\neg c)^{n-3}\right) \otimes(0,0, c, \ldots, c)=(0,0, c, 0, \ldots, 0)$, and so on.

Moreover, $\neg g \otimes 2 \forall g=(c, 0, \ldots, 0)$. From here we conclude the proof of the theorem.

Lemma 4. $M M V(C)$-algebra

$$
U_{1}=\operatorname{Rad}^{*}\left(\left(\operatorname{Rad}^{*}\left(C^{2}, \exists\right) \times(C, \exists)\right)\right)\left(=\operatorname{Rad}^{*}\left(T_{7} \times T_{1}\right)\right)
$$

is generated by $((c, 0), c) \quad(((\neg c, 1), \neg c))$, which is a perfect $M V$-algebra. Moreover, the subalgebra of $\left.\operatorname{Rad}^{*}\left(C^{2}, \exists\right) \times(C, \exists)\right)$ generated by $((c, 0), c)$ $(((\neg c, 1), \neg c))$ is isomorphic to $\operatorname{Rad}^{*}\left(\left(\operatorname{Rad}^{*}\left(C^{2}, \exists\right) \times(C, \exists)\right)\right)$.

Proof. It is clear that by means of elements $((0,0), c),((0, c), 0),((c, 0), 0)$ and the operations \oplus, \vee we can obtain all elements of $\operatorname{Rad}\left(\left(\operatorname{Rad}^{*}\left(C^{2}, \exists\right) \times\right.\right.$ $(C, \exists))$, and thereby all elements of $\operatorname{Rad}^{*}\left(\left(\operatorname{Rad}^{*}\left(C^{2}, \exists\right) \times(C, \exists)\right)\right)$. Let $g=$ $((c, 0), c)$. Then $\forall g=((0,0), c) ; \exists g=((c, c), c) ; \neg \forall g=((1,1), \neg c) ; \neg g=$ $((\neg c, 1), \neg c) ; \neg \forall g \otimes \exists g=((c, c), 0) ;(\neg \forall g \otimes \exists g) \rightarrow g=((1, \neg c), 1) ; \neg \forall g \otimes$ $\exists g=((c, c), 0) ; \neg((\neg \forall g \otimes \exists g) \rightarrow g)=((0, c), 0) ;((c, 0) c) \wedge((c, c), 0)=$ $((c, 0), 0)$. So we have obtained the elements $((0,0), c),((0, c), 0),((c, 0), 0)$. Hence, $\operatorname{Rad}^{*}\left(\left(\operatorname{Rad}^{*}\left(C^{2}, \exists\right) \times(C, \exists)\right)\right)$ is generated by $((c, 0), c)$, and thereby by element $(\neg c, 1), \neg c)$.

Observe that the element $((c, 0), c) \quad((\neg c, 1), \neg c))$ belongs to radical (coradical). So, the subalgebra generated by this element is perfect and isomorphic to $\operatorname{Rad}^{*}\left(\left(\operatorname{Rad}^{*}\left(C^{2}, \exists\right) \times(C, \exists)\right)\right)$.

Lemma 5. $M M V(C)$-algebra

$$
U_{1}^{2}=\operatorname{Rad}^{*}\left(\left(\operatorname{Rad}^{*}\left(C^{2}, \exists\right) \times(C, \exists)\right)\right) \times \operatorname{Rad}^{*}\left(\left(\operatorname{Rad}^{*}\left(C^{2}, \exists\right) \times(C, \exists)\right)\right)
$$

is generated by $((c, 0), c),(\neg c, 1), \neg c))$.
Proof. Indeed, from the generator $((c, 0), c),(\neg c, 1), \neg c))$ we can obtain the elements $\left.((0,0), 0),(1,1), 1))=2(((c, 0), c),(\neg c, 1), \neg c))^{2}\right)$ and $\left.\left.((1,1), 1),(0,0), 0\right)\right)=$ $\neg((0,0), 0),(1,1), 1))$. So, $\operatorname{Rad}^{*}\left(\left(\operatorname{Rad}^{*}\left(C^{2}, \exists\right) \times(C, \exists)\right)\right) \times \operatorname{Rad}^{*}\left(\left(\operatorname{Rad}^{*}\left(C^{2}, \exists\right) \times\right.\right.$ $(C, \exists))$) is generated by $((c, 0), c),(\neg c, 1), \neg c))$.

Lemma 6. The subalgebra U_{2} of $M M V(C)$-algebra $\left(C^{2}, \exists\right)^{3}$ generated by $t=((c, \neg c),(1, c),(\neg c, 0))$ is a proper subalgebra with one maximal monadic filter.

Proof. Let us notice that one-generated non-trivial monadic Boolean algebra is isomorphic to $\left(2^{2}, \exists\right)$ with generator $(0,1)$. Notice also that $\left(2^{2}, \exists\right) \cong$ $\left(C^{2}, \exists\right) /((c, c)]$, where $((c, c)]$ is the monadic ideal generated by (c, c) which is maximal at the same time. So, since $\left(2^{2}, \exists\right)$ should be homomorphic image of the subalgebra of $M M V(C)$-algebra $\left(C^{2}, \exists\right)^{3}$ generated by $((c, \neg c),((c, 0), c)$, $((\neg c, 1), \neg c))$, the subalgebra must have one maximal monadic ideal. Moreover, U_{2} is a subdirect product of subdirectly irreducible copies of algebra $\left(C^{2}, \exists\right)$, since $\left(C^{2}, \exists\right)$ is generated separately by $(c, \neg c),(1, c),(\neg c, 0)$.

Lemma 7. $U_{2} / J_{i} \cong\left(C^{2}, \exists\right)(i=1,2,3)$, where $J_{1}=(((c, c),(0,0),(0,0))]$, $J_{2}=(((0,0),(c, c),(0,0))], J_{3}=(((0,0),(0,0),(c, c))]$, that is the monadic ideals generated by $((c, c),(0,0),(0,0)),((0,0),(c, c),(0,0)),((0,0),(0,0),(c, c))$, respectively.

Proof. Now we show that the elements can be obtained by the generator t. Indeed, $\neg \exists t \wedge \forall t=((c, c),(0,0),(0,0)) ;(\neg \exists t \vee \forall t) \wedge \exists \neg t=((0,0),(0,0),(c, c))$; $(\neg \exists t \oplus(\neg \exists t \vee \forall t)) \otimes\left(\neg\left(\exists \neg t \otimes(\neg \exists t \wedge \forall t) \wedge(\neg \exists t \wedge \forall t)^{2}=((0,0),(c, c),(0,0))\right.\right.$.

Fig. 2

Fig. 3

The ordered set corresponding to the prime filter space of algebras $T_{8} \times$ $T_{9} \times T_{3} \times T_{4} \times T_{5}$ generated by $\left(c_{1}, \neg c_{2}\right),\left(\neg c_{1}, c_{2}\right),(c, \neg c),(1, c),(\neg c, 0)$ is depicted in Fig. 2 and the ordered set corresponding to the prime filter space of algebras generated by $\left(c_{1}, c_{2}\right), c, \neg c,\left(\neg c_{1}, \neg c_{2}\right)$ is depicted in Fig. 3.
Theorem 8. Let $A=\prod_{i \in I} A_{i}$ be a direct product of the family of all subdirectly irreducible one-generated $M M V(C)$-algebras A_{i} with generators $g_{i} \in$ $A_{i}(i \in I)$. Let $F_{M M V(C)}(1)$ be the subalgebra of A generated by the generator $g=\left(g_{i}\right)_{i \in I} \in A$. Then

1) the algebra $F_{M M V(C)}(1)$ is a subdirect product of the family $\left\{A_{i}: i \in I\right\}$;
2) any subdirectly irreducible one-generated $M M V(C)$-algebra is a homomorphic image of $F_{M M V(C)}(1)$;
3) the algebra $F_{M M(C)}(1)$ generated by the generator $g=\left(g_{i}\right)_{i \in I} \in A$ is one-generated free MMV (C)-algebra with free generator $g=\left(g_{i}\right)_{i \in I}$;
4) the algebra $F_{M M V(C)}(1)$ has height 3;
5) the poset of prime filters of the algebra $F_{M M V(C)}(1)$ contains only four maximal elements and this four elements form the poset of MMV(C)-algebra $\left(\mathbf{2}^{2}, \exists\right) \times(\mathbf{2}, \exists)^{2}$, where $\mathbf{2}$ is two-element Boolean algebra.
Proof. 1). It is obvious that for any projection $\pi_{i}(i \in I) \pi_{i}(g)=g_{i}$ that generates A_{i}. So, $F_{\operatorname{MMV}(\mathbf{C})}(1)$ is a subdirect product of the family $\left\{A_{i}: i \in\right.$ $I\}$.
2). Because $F_{\operatorname{MMV}(\mathbf{C})}(1)$ is a subdirect product of all subdirectly irreducible one-generated $M M V(C)$-algebras A_{i} we have that any subdirectly irreducible one-generated $M M V(C)$-algebra is a homomorphic image of $F_{\text {MMV(C) }}(1)$
3). Let us suppose that an identity $P(x)=Q(x)$ does not hold in the variety MMV(C). Then it does not hold in some subdirectly irreducible onegenerated $M M V(C)$-algebras A_{i} on the generator g_{i}. So, it does not hold in $F_{\operatorname{MMV}(\mathbf{C})}(1)$ on the generator g. From here we conclude that $F_{\text {MMV(C) }}(1)$ generated by the generator $g=\left(g_{i}\right)_{i \in I} \in A$ is one-generated free $M M V(C)$ algebra with free generator $g=\left(g_{i}\right)_{i \in I}$.
4). The assertion follows from the Lemma 2.
5). This item follows from the fact that the algebra $\left(\mathbf{2}^{2}, \exists\right) \times(\mathbf{2}, \exists)^{2}$ is a free one-generated monadic Boolean algebra and the variety of monadic Boolean algebras is a subvariety of the variety MMV(C).

$4 \quad m$-generated free monadic $M M V(C)$-algebras

We can generalize easily the results of one-generated $M M V(C)$-algebras on m-generated. Since the prime filter space of 1-generated free $M M V(C)$ algebra and, also, m-generated free $M V(C)$-algebra ($m>1$) is infinite [9], we have that the prime filter space of m-generated free $M M V(C)$-algebra is also infinite. But the number of the prime filter spaces of m-generated subdirectly irreducible $M M V(C)$-algebra is finite.

Notice that the smallest subvariety of the variety MMV(C), different from the variety of Boolean algebras with trivial monadic operator, is the variety of monadic Boolean algebras. So, any m-generated free monadic Boolean algebra is a homomorphic image of m-generated free $M M V(C)$ algebra. It holds the following

Proposition 9. [2, 13, 14]. m-generated free monadic Boolean algebra $(B(m), \exists)$ is isomorphic to

$$
\prod_{k=1}^{2^{m}}\left(2^{k}, \exists\right)^{\left(2^{k}{ }^{k}\right)}
$$

Corollary 10. There exists exactly $\sum_{k=1}^{2^{m}}\binom{k}{2^{m}}\left(=2^{2^{m}}-1\right)$ number of maximal monadic filters of $(B(m), \exists)$. These maximal monadic filters are generated
by $\left(0^{1}, \ldots, 0^{k-1}, 1^{k}, 0^{k+1}, \ldots, 2^{2^{m}}\right)$ where 1^{k} is the top element of $\left(2^{k}, \exists\right)(1 \leq$ $\left.k \leq 2^{m}\right), 0^{i}$ is the bottom element of $\left(\mathbf{2}^{i}, \exists\right)\left(1 \leq i \leq 2^{m}\right)$.

Notice, that monadic Boolean algebras are also monadic $M V(C)$-algebra, but of height 1 .

As for one-generated case as an obvious fact we have the following
Lemma 11. The height of an m-generated subdirectly irreducible $M M V(C)$ algebra is limited by some natural number $k>0$. In other words, a maximal chain of the poset of prime filters of a subdirectly irreducible MMV(C)algebra is limited by some natural number $k>0$.

Since we have infinitely many subdirectly irreducible one-generated $M M V(C)$ algebras, it holds

Lemma 12. There are infinitely many subdirectly irreducible m-generated $M M V(C)$-algebras for $m>1$.

Theorem 13. The m-generated subdirectly irreducible $M M V(C)$-algebras for $m \geq 2$ are:

1) $\left(2^{2^{m}}, \exists\right)$,
2) $\left(C_{m}, \exists\right)$,
3) $\left(C^{2^{m}}, \exists\right)$,
4) $\left(\operatorname{Rad}^{*}\left(C^{m}\right), \exists\right)$,
5) $\left(C_{m}^{m}, \exists\right)$.

Proof. 1) and 2) is trivial. 3). It is obvious that ($\left.C^{2^{m}}, \exists\right)$ has as a subalgebra the monadic Boolean algebra $\left(2^{2^{m}}, \exists\right)$ the generators of which are the generators of the free m-generated Boolean algebra $\mathbf{2}^{2^{m}}$. If we change in every free generator of $\mathbf{2}^{2^{m}}$ the element 0 by c and 1 by $\neg c$, then we will get m generators of $\left.\left(C^{2^{m}}, \exists\right) .4\right)$. It is obvious that $(c, 0, \ldots, 0),(0, c,, \ldots, 0), \ldots,(0, \ldots, c)$ generate $\left(\operatorname{Rad}^{*}\left(C^{m}\right), \exists\right)$. 5). The generators of $\left(C_{m}^{m}, \exists\right)$ are $g_{1}=\left(\neg c_{1}, c_{2}, \ldots, c_{m}\right.$, $g_{2}=\left(c_{1}, \neg c_{2}, \ldots, c_{m}, \ldots, g_{m}=\left(c_{1}, c_{2}, \ldots, \neg c_{m}\right.\right.$. Indeed, $\neg \exists g_{1}=\left(c_{1}, c_{1}, \ldots, c_{1}\right)$, $\neg \exists g_{2}=\left(c_{2}, c_{2}, \ldots, c_{2}\right), \ldots \quad, \neg \exists g_{m}=\left(c_{m}, c_{m}, \ldots, c_{m}\right) ; 2 g_{1}^{2}=(1,0, \ldots, 0)$, $2 g_{2}^{2}=(0,1, \ldots, 0), \ldots, 2 g_{m}^{2}=(0,0, \ldots, 1)$. And these elements generate $\left(C_{m}^{m}, \exists\right)$.

Theorem 14. Let $A=\prod_{i \in I} A_{i}$ be a direct product of the family of all subdirectly irreducible m-generated $M M V(C)$-algebras A_{i} with generators
$g_{i}^{(1)}, g_{i}^{(2)}, \ldots, g_{i}^{(m)} \in A_{i}(i \in I)$, where $\left\{g_{i}^{(1)}, g_{i}^{(2)}, \ldots, g_{i}^{(m)}\right\} \neq\left\{g_{j}^{(1)}, g_{j}^{(2)}, \ldots, g_{j}^{(m)}\right\}$ for $i \neq j$. Let $F_{M M V(C)}(m)$ be the subalgebra of A generated by the generators $g_{1}=\left(g_{i}^{(1)}\right)_{i \in I} \in A, \ldots g_{m}=\left(g_{i}^{(m)}\right)_{i \in I} \in A$. Then

1) the algebra $F_{M M V(C)}(m)$ is a subdirect product of the family $\left\{A_{i}: i \in\right.$ I\};
2) any subdirectly irreducible m-generated $M M V(C)$-algebra is a homomorphic image of $F_{M M V(C)}(m)$;
3) the algebra $F_{M M V(C)}(m)$ generated by the generator $g_{1}=\left(g_{i}^{(1)}\right)_{i \in I} \in$ A, ... $g_{m}=\left(g_{i}^{(m)}\right)_{i \in I} \in A$ is m-generated free MMV (C)-algebra with free generator $g_{1}=\left(g_{i}^{(1)}\right)_{i \in I} \in A, \ldots g_{m}=\left(g_{i}^{(m)}\right)_{i \in I} \in A$.

Proof. The theorem is proved as in one-generated case.

Theorem 15. Free algebra $F_{M M(C)}(m)$ is isomorphic to the finite product of monadic $M V(C)$-algebras $D_{k}\left(1 \leq k \leq 2^{2^{m}}-1\right)$ the homomorphic image by maximal monadic filter of which is isomorphic to the subdirectly irreducible monadic Boolean algebra $\left(\mathbf{2}^{m(k)}, \exists\right)$, where $m(k) \leq 2^{m}$. The number of subdirectly irreducible MMVC)-algebras having maximal homomorphic image the algebra $\mathfrak{2}^{m(k)}$ is equal to $\binom{m(k)}{2^{m}}$.

Proof. Notice that m-generated monadic Boolean algebra $(B(m), \exists)$ is a homomorphic image of $F_{\mathbf{M M V}(\mathbf{C})}(m)$. The algebra $(B(m), \exists)$ contains $2^{2^{m}}-1$ maximal monadic filters. The intersection of all maximal monadic filters of $(B(m), \exists)$ is equal to $\left[1_{B(m)}\right)$. According to Corollary 10 these maximal monadic filters of $(B(m), \exists)$ is generated by $\left(0^{1}, \ldots, 0^{k-1}, 1^{k}, 0^{k+1}, \ldots, 0^{2^{m}}\right)$ where 1^{k} is the top element of $\left(2^{k}, \exists\right)\left(1 \leq k \leq 2^{m}\right), 0^{i}$ is the bottom element of $\left(2^{i}, \exists\right)\left(1 \leq i \leq 2^{m}\right)$. Denote the maximal monadic filters of $(B(m), \exists)$ generated by $\left(0^{1}, \ldots, 0^{k-1}, 1^{k}, 0^{k+1}, \ldots, 0^{2^{m}}\right)$ by F_{k}. The factor algebra $\left(B(m) / F_{k}, \exists\right)$ is isomorphic to $\left(2^{k}, \exists\right)$ that is subdirectly irreducible the number of which is equal to $\binom{k}{2^{m}}$. Let F_{k}^{M} be the monadic filter of $F_{\mathbf{M M V}(\mathbf{C})}(m)$ generated in $F_{\operatorname{MMV}(\mathbf{C})}(m)$ by F_{k}. It is obvious that the intersection of all such kind of the monadic filters of $F_{\operatorname{MMV(C)}}(m)$ is also equal to the unite element of $F_{\operatorname{MMV}(\mathbf{C})}(m)$. So, $F_{\operatorname{MMV}(\mathbf{C})}(m)$ is isomorphic to the finite product of the algebras $D_{k}=F_{\operatorname{MMV}(\mathbf{C})}(m) / F_{k}^{M}$, where $1 \leq k \leq 2^{2^{m}}-1$.

5 Finitely generated projective $M M V(C)$-algebras

In this section previously we will prove auxiliary assertions.
Let \mathbf{V} be a variety. Recall that an algebra $A \in \mathbf{V}$ is said to be a free algebra over \mathbf{V}, if there exists a set $A_{0} \subset A$ such that A_{0} generates A and every mapping f from A_{0} to any algebra $B \in \mathbf{V}$ is extended to a homomorphism h from A to B. In this case A_{0} is said to be the set of free generators of A. If the set of free generators is finite, then A is said to be a free algebra of finitely many generators. We denote a free algebra A with $m \in(\omega+1)$ free generators by $F_{\mathbf{V}}(m)$. We shall omit the subscript \mathbf{V} if the variety \mathbf{V} is known.

An algebra A is called projective if for any algebra epimorfism (=homomorphism onto) $f: D \rightarrow B$ and a homomorphism $h: A \rightarrow B$ there is a homomorphism $g: A \rightarrow D$ such that $f g=h$. An algebra H is a retract of an algebra A if there are homomorphisms $f: A \rightarrow H$ and $g: H \rightarrow A$ such that $f g=I d_{H}$, where $I d_{H}$ is an identity mapping of the set H. It is well-known that in varieties the projective algebras are just the retracts of the free algebras. So, a $M M V(C)$-algebra is projective if and only if it is a retract of a free $M M V(C)$-algebra. We say that the subalgebra A of $F_{\mathbf{V}}(m)$ is projective if there exists endomorphism $h: F_{\mathbf{V}}(m) \rightarrow F_{\mathbf{V}}(m)$ such that $h(x)=x$ for every $x \in A$.

An algebra A is called finitely presented if A is finitely generated, with the generators $a_{1}, \ldots, a_{m} \in A$, and there exist a finite number of equations $P_{1}\left(x_{1}, \ldots, x_{m}\right)=Q_{1}\left(x_{1}, \ldots, x_{m}\right), \ldots, P_{n}\left(x_{1}, \ldots, x_{m}\right)=Q_{n}\left(x_{1}, \ldots, x_{m}\right)$ holding in A on the generators $a_{1}, \ldots, a_{m} \in A$ such that if there exists an m generated algebra B, with generators $b_{1}, \ldots, b_{m} \in B$, such that the equations $P_{1}\left(x_{1}, \ldots, x_{m}\right)=Q_{1}\left(x_{1}, \ldots, x_{m}\right), \ldots, P_{n}\left(x_{1}, \ldots, x_{m}\right)=Q_{n}\left(x_{1}, \ldots, x_{m}\right)$ hold in B on the generators $b_{1}, \ldots, b_{m} \in B$, then there exists a homomorphism $h: A \rightarrow B$ sending a_{i} to b_{i}.

Proposition 16. [17] [7]. An m-generated algebra A in a variety \mathbf{V} is projective if, and only if, there exist polynomials P_{1}, \ldots, P_{m} such that, denoting by g_{1}, \ldots, g_{m} the free generators of $F_{\mathbf{V}}(m)$,
$P_{i}\left(P_{1}\left(g_{1}, \ldots, g_{m}\right), \ldots, P_{m}\left(g_{1}, \ldots, g_{m}\right)\right)=P_{i}\left(g_{1}, \ldots, g_{m}\right)$, for each $1 \leq i \leq m$
and
$P_{1}\left(g_{1}, \ldots, g_{m}\right), \ldots, P_{m}\left(g_{1}, \ldots, g_{m}\right)$ generate an algebra isomorphic to A.

Theorem 17. If A is n-generated projective $M M V(C)$-algebra, then A is finitely presented.

Proof. Since A is n-generated projective $M M V(C)$-algebra, A is retract of $F_{\operatorname{MMV}(\mathbf{C})}(n)$, i. e. there exist homomorphisms $h: F_{\operatorname{MMV}(\mathbf{C})}(n) \rightarrow A$ and $\varepsilon: A \rightarrow F_{\operatorname{MMV}(\mathbf{C})}(n)$ such that $h \varepsilon=I d_{A}$, and moreover, there exist n polynomials $P_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, P_{n}\left(x_{1}, \ldots, x_{n}\right)$ such that

$$
P_{i}\left(g_{1}, \ldots, g_{n}\right)=\varepsilon\left(a_{i}\right)=\varepsilon h\left(g_{i}\right)
$$

and

$$
P_{i}\left(P_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, P_{n}\left(x_{1}, \ldots, x_{n}\right)\right)=P_{i}\left(x_{1}, \ldots, x_{n}\right), i=1, \ldots, n,
$$

where g_{1}, \ldots, g_{n} are free generators of $F_{\operatorname{MMV}(\mathbf{C})}(n)$. Observe that $h\left(g_{1}\right), \ldots, h\left(g_{n}\right)$ are generators of A which we denote by a_{1}, \ldots, a_{n} respectively. Let e be the endomorphism $\varepsilon h: F_{\operatorname{MMV}(\mathbf{C})}(n) \rightarrow F_{\operatorname{MMV}(\mathbf{C})}(n)$. This endomorphism has properties : $e e=e$ and $e(x)=x$ for every $x \in \varepsilon(A)$.

Let us consider the set of equations $\Omega=\left\{P_{i}\left(x_{1}, \ldots, x_{n}\right) \leftrightarrow x_{i}=1: i=\right.$ $1, \ldots, n\}$ and let $u=\bigwedge_{i=1}^{n}\left(\left(P_{i}\left(g_{1}, \ldots, g_{n}\right) \leftrightarrow g_{i}\right) \in F(n)\right.$, where $x \leftrightarrow y$ is abbreviation of $(x \rightarrow y) \wedge(y \rightarrow x)$. Observe that the equations from Ω are true in A on the elements $\varepsilon\left(a_{i}\right)=e\left(g_{i}\right), i=1, \ldots, n$. Indeed, since e is an endomorphism

$$
e(u)=\bigwedge_{i=1}^{n} e\left(g_{i}\right) \leftrightarrow P_{i}\left(e\left(g_{1}\right), \ldots, e\left(g_{n}\right)\right) .
$$

But $P_{i}\left(e\left(g_{1}\right), \ldots, e\left(g_{n}\right)\right)=P_{i}\left(P_{1}\left(g_{1}, \ldots, g_{n}\right), \ldots, P_{n}\left(g_{1}, \ldots, g_{n}\right)\right)=P_{i}\left(g_{1}\right.$, $\left.\ldots, g_{n}\right)=\varepsilon h\left(g_{i}\right)=e\left(g_{i}\right), i=1, \ldots, n$. Hence $e(u)=1$ and $u \in e^{-1}(1)$, i. e. $[u) \subseteq e^{-1}(1)$. Therefore there exists homomorphism $f: F(n) /[u) \rightarrow \varepsilon(A)$ such that the diagram

commutes, i. e. $r f=e$, where r is a natural homomorphism sending x to $x /[u)$. Now consider the restrictions e^{\prime} and r^{\prime} on $\varepsilon(A) \subseteq F(n)$ of e and r respectively Then $f r^{\prime}=e^{\prime}$. But $e^{\prime}=I d_{\varepsilon(A)}$. Therefore $f r^{\prime}=I d_{\varepsilon(A)}$. From here we conclude that r^{\prime} is an injection. Moreover r^{\prime} is a surjection, since $r\left(\varepsilon\left(a_{i}\right)\right)=r\left(g_{i}\right)$. Indeed $e\left(g_{i}\right)=P_{i}\left(g_{1}, \ldots, g_{n}\right)$ and $g_{i} \leftrightarrow P_{i}\left(g_{1}, \ldots, g_{n}\right)=$ $g_{i} \leftrightarrow e\left(g_{i}\right)$, where $e\left(g_{i}\right)=\varepsilon h\left(g_{i}\right)$. So $g_{i} \leftrightarrow P_{i}\left(g_{1}, \ldots, g_{n}\right) \geq \bigwedge_{i=1}^{n} g_{i} \leftrightarrow$ $P_{i}\left(g_{1}, \ldots, g_{n}\right)$, i. e. $g_{i} \leftrightarrow P_{i}\left(g_{1}, \ldots, g_{n}\right) \in[u)$. Hence r^{\prime} is an isomorphism between $\varepsilon(A)$ and $F(n) /[u)$. Consequently $A(\cong \varepsilon(A))$ is finitely presented.

It easy to prove the following
Lemma 18. Any m-generated non-Boolean subdirectly irreducible $M M V(C)$ algebra A contains (C, \exists) as a subalgebra.

Lemma 19. Any subdirectly irreducible m-generated $M M V(C)$-algebra (A, \exists) is a subalgebra of $\left(C_{n}^{k}, \exists\right)$ for some $n, k \in \omega$ and $n \leq m$.

Proof. Let (A, \exists) be subdirectly irreducible m-generated $M M V(C)$-algebra. Since (A, \exists) is subdirectly irreducible, we have that $\exists A$ is totally ordered which is isomorphic to $\left(C_{n}, \exists\right)$ for some $n \leq m$. Then A as $M V(C)$-algebra is subdirect product of copies of C_{n}, i .e. A is a subalgebra of C_{n}^{k} for some $n, k \in \omega$ and $n \leq m$. Therefore, (A, \exists) is a subalgebra of $\left(C_{n}^{k}, \exists\right)$, where the operation \exists in (A, \exists) is defined in the same way as in $\left(C_{n}^{k}, \exists\right)$.

Lemma 20. The algebra $\left(C_{m}^{k}, \exists\right)$ is a retract of $\left(C_{n}^{k}, \exists\right)$ for any positive integer $k, 1 \leq m \leq n$.

Proof. Notice that $\left(C_{m}, \exists\right)$ is a subalgebra of $\left(C_{n}, \exists\right)$. So, we can define the embedding $\varepsilon: C_{m}^{k} \rightarrow C_{n}^{k}$ in the following way: $\varepsilon\left(a_{1}, \ldots, a_{k}\right)=\left(\varepsilon\left(a_{1}\right), \ldots, \varepsilon\left(a_{k}\right)\right)$, where $\varepsilon\left(c_{i}\right)=c_{n-m+i}$ for $i=1, \ldots, m$.

Let $h: C_{n}^{k} \rightarrow C_{m}^{k}$ be the homomorphism corresponding to the principal ideal generated by $\left(c_{n-m}, \ldots, c_{n-m}\right)$. By this homomorphism we have $h(0)=$ $h\left(c_{i}\right)=0$ for $i=1, \ldots, n-m$ and $h\left(c_{n-m+1}\right)=c_{1}, h\left(c_{n-m+2}\right)=c_{2}, \ldots, h\left(c_{n}\right)=$ c_{m}. Then it is easy to check that $h \varepsilon=I d_{C_{m}^{k}}$, i. e. $\left(C_{m}^{k}, \exists\right)$ is a retract of $\left(C_{n}^{k}, \exists\right)$.

Lemma 21. Let (A, \exists) be m-generated subdirectly irreducible $M M V(C)$ algebra and $(u] \subset A$ principal monadic ideal generated by $u \in A$. Then $(A, \exists) /(u]$ is a retract of (A, \exists).

Proof. The algebra (A, \exists) is a subalgebra of $\left(C_{n}^{k}, \exists\right)$ for some $n, k \in \omega$ and $n \leq m$ (Lemma 17) and as an $M V$-algebra A is a subdirect product of copies of $C_{n}, n \leq m$. Then for some $m \leq n$, we have $u=\left(c_{m-n}, \ldots, c_{m-n}\right) \in C_{n}^{k}$, since $\left(c_{m-n}, \ldots, c_{m-n}\right) \in \exists A$. Let h be the homomorphism corresponding to the principal ideal $(u]$. So, we have a homomorphism $h: C_{n}^{k} \rightarrow C_{m}^{k}$ such that $h(0)=h\left(c_{i}\right)=0$ for $i=1, \ldots, m-n$ and $h\left(c_{m-n+1}\right)=c_{1}, h\left(c_{m-n+2}\right)=$ $c_{2}, \ldots, h\left(c_{m}\right)=c_{n}$.

Define the embedding $\varepsilon: C_{n}^{k} \rightarrow C_{m}^{k}$ in the following way: $\varepsilon\left(a_{1}, \ldots, a_{k}\right)=$ $\left(\varepsilon\left(a_{1}\right), \ldots, \varepsilon\left(a_{k}\right)\right)$, where $\varepsilon\left(c_{i}\right)=c_{m-n+i}$ for $i=1, \ldots, m$. Then it is easy to check that $h \varepsilon=I d_{A} / 9(u]$, i. e. $(A, \exists) /(u]$ is a retract of (A, \exists).

Lemma 22. Let $A \subset \prod_{i \in I} A_{i}$ be m-generated $M M V(C)$-algebra which is subdirect product of the family $\left\{A_{i}\right\}_{\in I}$ of the subdirectly irreducible algebras $A_{i}(i \in I)$ and $A_{i}^{\prime} \subset A$, which is a retract of A_{i} for $i \in I$. Then subalgebra $A^{\prime}=A \cap \prod_{i \in I} A_{i}^{\prime}$ is a retract of A.

Proof. Since A_{i}^{\prime} is a retract of A_{i}, we have that there exist homomorphisms $\varepsilon_{i}: A_{i}^{\prime} \rightarrow A_{i}$ and $h_{i}: A_{i} \rightarrow A_{i}^{\prime}$ such that $h_{i} \varepsilon_{i}={I d_{A_{i}^{\prime}} \text {. It is obvious that }}$ $\prod_{i \in I} A_{i}^{\prime}$ is a retract of $\prod_{i \in I} A_{i}$. Indeed, there exist homomorphisms $h=$ $\left(h_{i}\right)_{i \in I}: \prod_{i \in I} A_{i} \rightarrow \prod_{i \in I} A_{i}^{\prime}$ and $\varepsilon=\left(\varepsilon_{i}\right)_{i \in I}: \prod_{i \in I} A_{i}^{\prime} \rightarrow \prod_{i \in I} A_{i}$ such that $h \varepsilon=I d_{\prod_{i \in I} A_{i}^{\prime}}$. Then the restriction of the homomorphism h on A, denoted by h_{A}, and the restriction of the homomorphism ε on A^{\prime}, denoted by ε_{A}, give $h_{A} \varepsilon_{A^{\prime}}=I d_{A^{\prime}}$.

Proposition 23. [19]. m-generated monadic Boolean algebra (B, \exists) is projective in the variety of monadic Boolean algebras iff $(B, \exists) \cong(\mathbf{2}, \exists) \times\left(B^{\prime}, \exists\right)$ for some m-generated monadic Boolean algebra $\left(B^{\prime}, \exists\right)$.

Lemma 24. The Boolean envelope $(B(m), \exists)$ of the algebra $F_{\operatorname{MMV}(\mathbf{C})}(m)$, where $B(m)=\left\{2 x^{2}: x \in F_{\operatorname{MMV}(\mathbf{C})}(m)\right\}$ is a retract of the algebra $F_{\operatorname{MMV}(\mathbf{C})}(m)$. In other words the m-generated monadic Boolean algebra $(B(m), \exists)$ is a projective algebra in MMV(C).

Proof. Firstly we show that $\left(\mathbf{2}^{k}, \exists\right)$ is a retract of D_{k}. Recall that $\left(\mathbf{2}^{k}, \exists\right)$ is a homomorphic image by maximal monadic filter. Denote this homomorphism by $h: D_{K} \rightarrow\left(2^{k}, \exists\right)$. Notice that the maximal monadic filter is generated by the set $\left\{x \in \exists D_{k}: 2 x=1\right\}$. On the other hand the Boolean envelope $\left(B\left(D_{k}\right), \exists\right)$, where $B\left(D_{k}\right)=\left\{2 x^{2}: x \in D_{k}\right\}$, is a subalgebra of D_{k}, which is isomorphic to $\left(2^{k}, \exists\right)$. Denote by $\varepsilon:\left(B\left(D_{k}\right), \exists\right) \rightarrow D_{k}$ this embedding. It is obvious that $h \varepsilon=I d_{B\left(D_{k}\right)}$.

Corollary 25. $\left(2^{k_{1}}, \exists\right) \times \ldots \times\left(2^{k_{n}}, \exists\right)$ is a retract of $D_{k_{1}} \times \ldots \times D_{k_{n}}$.
Proof. Let A_{1}, A_{2} be any algebras and, respectively, B_{1}, B_{2} are retracts of them, i. e. we have homomorphisms $h_{i}: A_{i} \rightarrow B_{i}$ and $\varepsilon_{i}: B_{i} \rightarrow A_{i}$ such that $h_{i} \varepsilon_{i}=\operatorname{Id}_{B_{i}}(i=1,2)$. Then $B_{1} \times B_{2}$ is a retract of $A_{1} \times A_{2}$. Indeed, $h=\left(h_{1}, h_{2} n\right): A_{1} \times A_{2} \rightarrow B_{1} \times B_{2}$ and $\varepsilon=\left(\varepsilon_{1}, \varepsilon_{2}\right)$ are homomorphisms such that $h \varepsilon=I d_{B_{1} \times B_{2}}$. From here follows this Corollary.

Lemma 26. For any $k \in\left\{1, \ldots, 2^{2^{m}}-1\right\}$ there exists principal monadic filter $[u)$ of m-generated free $M M V(C)$-algebra $F_{M M V(C)}(m)\left(=\prod_{k=1}^{2^{2^{m}}-1} D_{k}\right)$ such that $\pi_{k}\left(F_{M M V(C)}(m)\right) \cong F_{M M V(C)}(m) /[u)$, where $\pi_{k}: F_{M M V(C)}(m) \rightarrow D_{k}$ is a projection on k-th component D_{k} and $u \in F_{M M V(C)}(m)$.

Proof. Let $u=\left(0^{1}, \ldots, 0^{k-1}, 1^{k}, 0^{k+1}, \ldots, 0^{2^{2^{m}}-1}\right) \in F_{\operatorname{MMV}(\mathbf{C})}(m)$, where 1^{k} is the top element of $D_{k}, 0^{i}$ is the bottom element of D_{i}. Notice that $\left(0^{1}, \ldots, 0^{k-1}, 1^{k}, 0^{k+1}, \ldots, 0^{2^{2^{m}}-1}\right)$ is Boolean element that belongs to $F_{\text {MMV(C) }}(m)$. Then $[u)$ will be a monadic filter such that $F_{\operatorname{MMV}(\mathbf{C})}(m) /[u) \cong D_{k}$. With this one we have proven this Lemma.

Lemma 27. The algebra $D_{1} \times D_{k_{1}} \times \ldots \times D_{k_{n}}$ is a projective $M M V(C)$ algebra, where $1<k_{i} \leq 2^{2^{m}}-1,1 \leq i \leq n$ and D_{1} is m-generated subdirectly irreducible perfect $M M V(C)$-algebra.

Proof. Let $\pi_{1 k_{1} \ldots k_{n}}: F_{\operatorname{MMV}(\mathbf{C})}(m) \rightarrow D_{1} \times D_{k_{1}} \times \ldots \times D_{k_{n}}$ be a projection onto $D_{1} \times D_{k_{1}} \times \ldots \times D_{k_{n}}$. Let $\left\{r_{1}, \ldots, r_{p}\right\}=\left\{1, \ldots, 2^{2^{m}}-1\right\}-\left\{1, k_{1}, \ldots, k_{n}\right\}$. So, $F_{\operatorname{MMV}(\mathbf{C})}(m)=D_{1} \times \prod_{i=1}^{n} D_{k_{i}} \times \prod_{i=1}^{p} D_{r_{i}}$. Then $D_{1} \times \prod_{i=1}^{n} D_{k_{i}} \times(2, \exists)$ is a subalgebra of $D_{1} \times \prod_{i=1}^{n} D_{k_{i}} \times \prod_{i=1}^{p} D_{r_{i}}$. Observe that (D, \exists), where $D=\left\{(x, 1): x \in \neg \operatorname{Rad} D_{1}\right\} \cup\left\{(x, 0): x \in \operatorname{Rad} D_{1}\right\}$, is a subalgebra of $D_{1} \times(\mathbf{2}, \exists)$, which is isomorphic to D_{1}. So, $D_{1} \times \prod_{i=1}^{n} D_{k_{i}}$ is a subalgebra of $D_{1} \times \prod_{i=1}^{n} D_{k_{i}} \times(2, \exists)$. Then there exists the embedding $\varepsilon: D_{1} \times D_{k_{1}} \times \ldots \times$ $D_{k_{n}} \rightarrow D_{1} \times \prod_{i=1}^{n} D_{k_{i}} \times \prod_{i=1}^{p} D_{r_{i}}$. Now, it is easy to check that $\pi_{1 k_{1} \ldots k_{n}} \varepsilon=$ $I d_{D_{1} \times D_{k_{1}} \times \ldots \times D_{k_{n}}}$. Hereby it is proved the theorem.

As in the variety $\mathbf{M V}(\mathbf{C})$ of $M V(C)$-algebras we have
Theorem 28. m-generated subalgebra (A, \exists) of $F_{M M V(C)}(m)$ is projective iff (A, \exists) is finitely presented and $A \cong A_{0} \times A_{1}$ where A_{0} is a perfect $M V$ algebra.

Proof. First of all notice that if A is not represented as $A_{0} \times A_{1}$, where A_{0} is a perfect $M V$-algebra, then A can not be a subalgebra of $F_{\operatorname{MMV}(\mathrm{C})}(m)$ and thereby it will not be a retract of $F_{\operatorname{MMV}(\mathbf{C})}(m)$. Indeed, let A_{0} be a retract of $F_{\operatorname{MMV}(\mathbf{C})}(m)$, i. e. there exist homomorphisms $h_{1}: F_{\operatorname{MMV}(\mathbf{C})}(m) \rightarrow A_{0}$ and $\varepsilon_{1}: A_{0} \rightarrow F_{\operatorname{MMV}(\mathbf{C})}(m)$ such that $h_{1} \varepsilon_{1}=I d_{A_{0}}$. Since the variety MB of monadic Boolean algebras is a subvariety of $\mathbf{M M V}(\mathbf{C})$, we have that there exists a homomorphism $f: F_{\operatorname{MMV}(\mathbf{C})}(m) \rightarrow F_{\mathrm{MB}}(m)$. Let $B\left(A_{0}\right)=$ $f \varepsilon_{1}\left(A_{0}\right)$. Denote the composition $f \varepsilon_{1}$ by k. So, for homomorphisms f : $F_{\mathrm{MMV}(\mathbf{C})}(m) \rightarrow F_{\mathrm{MB}}(m)$ and $k h_{1}: F_{\mathrm{MMV}(\mathbf{C})}(m) \rightarrow B\left(A_{0}\right)$ there exists homomorphism $h_{2}: F_{\mathrm{MB}}(m) \rightarrow B\left(A_{0}\right)$ such that $h_{2} f=k h_{1}$. For $f \varepsilon_{1}: A_{0} \rightarrow$ $F_{\operatorname{MMV}(\mathbf{C})}(m)$ and $k: A_{0} \rightarrow B(A)$ there exists a homomorphism $\varepsilon_{2}: B\left(A_{0}\right) \rightarrow$ $F_{\mathrm{MB}}(m)$ such that $f \varepsilon_{1}=\varepsilon_{2} k$. From $h_{2} f=k h_{1}$ we have $h_{2} f \varepsilon_{1}=k h_{1} \varepsilon_{1}$, and hence $h_{2} f \varepsilon_{1}=k$, since $h_{1} \varepsilon_{1}=I d_{A_{0}}$. Then $h_{2} \varepsilon_{2} k=k$, because $f \varepsilon_{1}=\varepsilon_{2} k$. Since k is a surjective homomorphism, we have that $h_{2} \varepsilon_{2}=I d_{B\left(A_{0}\right)}$. So, $B\left(A_{0}\right)$ is a retract of $F_{\mathrm{MB}}(m)$ and, hence, it is projective. According to Proposition 20 m -generated monadic Boolean algebra (B, \exists) is projective in the variety of monadic Boolean algebras iff $(B, \exists) \cong(\mathbf{2}, \exists) \times\left(B^{\prime}, \exists\right)$ for some m-generated monadic Boolean algebra $\left(B^{\prime}, \exists\right)$. But $(\mathbf{2}, \exists)$ is a homomorphic image of perfect monadic $M V(C)$-algebra. Notice also that any m-generated projective $M M V(C)$-algebra is finitely presented.

Now let us suppose that (A, \exists) is finitely presented and $A \cong A_{0} \times A_{1}$ where A_{0} is a perfect $M V$-algebra. Then (A, \exists) is a homomorphic image of $F_{\operatorname{MMV}(\mathbf{C})}(m)$ by some principal monadic filter $[u)$ for some $u \in F_{\operatorname{MMV}(\mathbf{C})}(m)$.

According to Theorem 15 free algebra $F_{\operatorname{MMV}(\mathbf{C})}(m)$ is isomorphic to the finite product of monadic $M V(C)$-algebras $D_{k}\left(1 \leq k \leq 2^{2^{m}}-1\right)$ the homomorphic image by maximal monadic filter of which is isomorphic to the subdirectly irreducible monadic Boolean algebra $\left(2^{k}, \exists\right)$. Then (A, \exists) is a homomorphic image of $D_{1} \times D_{k_{1}} \times \ldots \times D_{k_{n}}$ which is projective (Lemma 25), where D_{1} is a perfect $M M V(C)$-algebra. So, there exists principal monadic filter $\left[u^{\prime}\right)$ of $F_{\operatorname{MMV}(\mathbf{C})}(m)$ such that $F_{\operatorname{MMV}(\mathbf{C})}(m) /\left[u^{\prime}\right) \cong D_{1} \times D_{k_{1}} \times \ldots \times D_{k_{n}}$. Then there exists principal monadic filter $\left[u_{A}\right)=\left[\pi_{1 k_{1} \ldots k_{n}}\left(u^{\prime}\right)\right)$ of the algebra $D_{1} \times D_{k_{1}} \times \ldots \times D_{k_{n}}$ such that $D_{1} \times D_{k_{1}} \times \ldots \times D_{k_{n}} /\left[\pi_{1 k_{1} \ldots k_{n}}\left(u^{\prime}\right)\right) \cong A$, where $\pi_{1 k_{1} \ldots k_{n}}: F_{\operatorname{MMV}(\mathbf{C})}(m) \rightarrow D_{1} \times D_{k_{1}} \times \ldots \times D_{k_{n}}$ is a projection of $F_{\operatorname{MMV}(\mathbf{C})}(m)$ onto $D_{1} \times D_{k_{1}} \times \ldots \times D_{k_{n}}$. Let $u_{1}=\pi_{1}\left(u_{A}\right), u_{k_{i}}=\pi_{k_{i}}\left(u_{A}\right)$ be projections of the element u_{A} on corresponding components $D_{1}, D_{k_{1}}, \ldots, D_{k_{n}}$ respectively. Then $D_{1} /\left[u_{1}\right), D_{k_{i}} /\left[u_{k_{i}}\right)$ are retracts of $D_{1}, D_{k_{i}}(i=1, \ldots, n)$ respectively (Lemma 20). Then $D_{1} /\left[u_{1}\right) \times \prod_{i=1}^{n} D_{k_{i}} /\left[u_{k_{i}}\right)$ is a retract of $D_{1} \times \prod_{i=1}^{n} D_{k_{i}}$. Therefore A is projective (Lemma 19, 20, 25).

$6 \quad$ Projective formulas

Let us denote by \mathcal{P}_{m} a fixed set x_{1}, \ldots, x_{m} of propositional variables and by Φ_{m} the set of all propositional formulas in L_{P} with variables in \mathcal{P}_{m}. Notice that the m-generated free $M V(C)$-algebra $F_{\mathbf{M V}(\mathbf{C})}(m)$ is isomorphic to Φ_{m} / \equiv, where $\alpha \equiv \beta$ iff $\vdash(\alpha \leftrightarrow \beta)$ and $\alpha \leftrightarrow \beta=(\alpha \rightarrow \beta) \wedge(\beta \rightarrow \alpha)$. Subsequently we do not distinguish between the formulas and their equivalence classes. Hence we simply write Φ_{m} for $F_{\mathrm{MV}(\mathbf{C})}(m)$, and \mathcal{P}_{m} plays the role of the set of free generators. Since Φ_{m} is a lattice, we have an order \leq on Φ_{m}. It follows from the definition of \rightarrow that for all $\alpha, \beta \in \Phi_{m}, \alpha \leq \beta$ iff $\vdash(\alpha \rightarrow \beta)$.

Let α be a formula of the logic L_{P} and consider a substitution $\sigma: \mathcal{P}_{m} \rightarrow$ Φ_{m} and extend it to all of Φ_{m} by $\sigma\left(\alpha\left(x_{1}, \ldots, x_{m}\right)\right)=\alpha\left(\sigma\left(x_{1}\right), \ldots, \sigma\left(x_{m}\right)\right)$. We can consider the substitution as an endomorphism $\sigma: \Phi_{m} \rightarrow \Phi_{m}$ of the free algebra Φ_{m}.

Definition 29. A formula $\alpha \in \Phi_{m}$ is called projective if there exists a substitution $\sigma: \mathcal{P}_{m} \rightarrow \Phi_{m}$ such that $\vdash \sigma(\alpha)$ and $\alpha \vdash \beta \leftrightarrow \sigma(\beta)$, for all $\beta \in \Phi_{m}$.

Notice that the notion of projective formula was introduced for intuitionistic logic in [11].

Observe that we can rewrite any equation $P\left(x_{1}, \ldots, x_{m}\right)=Q\left(x_{1}, \ldots, x_{m}\right)$ in the variety $\mathbf{M V}(\mathbf{C})$ into an equivalent one $P\left(x_{1}, \ldots, x_{m}\right) \leftrightarrow Q\left(x_{1}, \ldots, x_{m}\right)=1$. So, for $\mathbf{M V}(\mathbf{C})$ we can replace n equations by one

$$
\bigwedge_{i=1}^{n} P_{i}\left(x_{1}, \ldots, x_{m}\right) \leftrightarrow Q_{i}\left(x_{1}, \ldots, x_{m}\right)=1
$$

Now we are ready to show a close connection between projective formulas and projective subalgebras of the free algebra Φ_{m}.

Theorem 30. Let A be an m-generated projective subalgebra of the free algebra Φ_{m}. Then there exists a projective formula α of m variables, such that A is isomorphic to $\Phi_{m} /[\alpha)$, where $[\alpha)$ is the principal filter generated by $\alpha \in \Phi_{m}$.

Proof. Suppose A is an m-generated projective subalgebra of Φ_{m} with generators a_{1}, \ldots, a_{m}. Then A is a retract of Φ_{m}, and there exist homomorphisms $\varepsilon: A \rightarrow \Phi_{m}, h: \Phi_{m} \rightarrow A$ such that $h \varepsilon=I d_{A}$, where $\varepsilon(x)=x$ for every $x \in A \subset \Phi_{m}$. Observe that εh is an endomorphism of Φ_{m}. We will show now that $\alpha=\bigwedge_{j=1}^{m}\left(x_{j} \leftrightarrow \varepsilon h\left(x_{j}\right)\right)$ is a projective formula, namely, that $\vdash \varepsilon h(\alpha)$ and $\alpha \vdash \beta \leftrightarrow \varepsilon h(\beta)$, for all $\beta \in \Phi_{m}$.

Indeed, $\varepsilon h\left(\bigwedge_{j=1}^{m}\left(p_{j} \leftrightarrow \varepsilon h\left(p_{j}\right)\right)\right)=\bigwedge_{j=1}^{m}\left(\varepsilon h\left(x_{j}\right) \leftrightarrow \varepsilon h \varepsilon h\left(x_{j}\right)\right)$, and since $h \varepsilon=I d_{A}$, we have $\varepsilon h\left(\bigwedge_{j=1}^{m}\left(x_{j} \leftrightarrow \varepsilon h\left(x_{j}\right)\right)\right)=\bigwedge_{j=1}^{m}\left(\varepsilon h\left(x_{j}\right) \leftrightarrow \varepsilon h\left(x_{j}\right)\right)$. Thus $\vdash \varepsilon h(\alpha)$. Further, for any $\beta \in \Phi_{m}, \varepsilon h\left(\beta\left(x_{1}, \ldots, x_{m}\right)\right)=\beta\left(\varepsilon h\left(x_{1}\right), \ldots, \varepsilon h\left(x_{m}\right)\right)$, and since $\alpha \vdash x_{j} \leftrightarrow \varepsilon h\left(x_{j}\right), j=1, \ldots, m$, we have $\alpha \vdash \beta \leftrightarrow \varepsilon h(\beta)$.

Since A is an m-generated projective $M V(C)$-algebra, according to the Proposition 16, there exist m polynomials $P_{1}\left(x_{1}, \ldots, x_{m}\right), \ldots, P_{m}\left(x_{1}, \ldots, x_{m}\right)$ such that

$$
P_{i}\left(x_{1}, \ldots, x_{m}\right)=\varepsilon\left(a_{i}\right)=\varepsilon h\left(x_{i}\right)
$$

and

$$
P_{i}\left(P_{1}\left(x_{1}, \ldots, x_{m}\right), \ldots, P_{m}\left(x_{1}, \ldots, x_{m}\right)\right)=P_{i}\left(x_{1}, \ldots, x_{m}\right), i=1, \ldots, m
$$

Observe, that $h\left(x_{i}\right)=a_{i}$. Since the m-generated projective $M V$-algebra A is finitely presented by the equation $\bigwedge_{j=1}^{m}\left(x_{j} \leftrightarrow \varepsilon h\left(x_{j}\right)\right)=1$, we have that $A \cong \Phi_{m} /[\alpha)$.

Theorem 31. If α is a projective formula of m variables, then $\Phi_{m} /[\alpha)$ is a projective algebra which is isomorphic to a projective subalgebra of Φ_{m}.

Proof. Suppose that α is a projective formula of m variables. Then there exists a substitution $\sigma: \mathcal{P}_{m} \rightarrow \Phi_{m}$ such that $\vdash \sigma(\alpha)$ and $\alpha \vdash \beta \leftrightarrow \sigma(\beta)$, for all $\beta \in \Phi_{m}$. Since σ is an endomorphism of $\Phi_{m}, \sigma\left(\Phi_{m}\right)$ is a subalgebra of Φ_{m}. Now we will show that $\sigma\left(\Phi_{m}\right)$ is a retract of Φ_{m}, i. e. $\sigma^{2}=\sigma$. Indeed, since α is a projective formula, $\sigma(\alpha)=1_{\Phi_{m}}$, and $\alpha \leq \beta \leftrightarrow \sigma(\beta)$ for all $\beta \in \Phi_{m}$. But then $\sigma(\alpha) \leq \sigma(\beta) \leftrightarrow \sigma^{2}(\beta), \sigma(\beta) \leftrightarrow \sigma^{2}(\beta)=1_{\Phi_{m}}, \sigma(\beta)=\sigma^{2}(\beta)$, and $\sigma^{2}=\sigma$. Hence $\sigma\left(\Phi_{m}\right)$ is a retract of Φ_{m}. So, $\sigma\left(\Phi_{m}\right)$ is isomorphic to $\Phi_{m} /[\alpha)$.

Thus we have the following correspondence between projective formulas and projective subalgebras of Φ_{m}. To each m-generated projective subalgebra of m-generated free $M V(C)$-algebra corresponds an m-variable projective formula and to two non-isomorphic m-generated projective subalgebra of m-generated free $M V(C)$-algebra correspond non-equivalent m-variable projective formulas. And two non-equivalent m-variable projective formulas correspond two different m-generated projective subalgebra of m-generated free $M V(C)$-algebra (but they can be isomorphic).

Therefore we arrive at the following
Corollary 32. There exists a one-to-one correspondence between projective formulas with m variables and m-generated projective subalgebras of Φ_{m}.

References

[1] L. P. Belluce, Further results on infinite valued predicate logic, J. Symbolic Logic 29 (1964) 69-78.
[2] H. Bass, Finite monadic algebras, Proceedings of the American Mathematical Society, vol. 9 (1958), pp. 258-268.
[3] L. P. Belluce, C.C. Chang, A weak completeness theorem for infinite valued 2rst-order logic, J. Symbolic Logic 28 (1963) 43-50.
[4] L. P. Belluce, A. Di Nola, B. Gerla, Perfect MV-algebras and their Logic, Applied Categorical Structures Volume 15, Numbers 1-2 (2007), 135-151.
[5] L.P. Belluce, R. Grigolia and A. Lettieri Representations of monadic MV- algebras, Studia Logica, vol. 81, Issue October 15th, 2005, pp. 125-144.
[6] C. C. Chang, Algebraic Analysis of Many-Valued Logics, Trans. Amer. Math. Soc., 88(1958), 467-490.
[7] A. Di Nola, R. Grigolia, On Monadic MV-algebras, APAL, Vol. 128, Issues 1-3 (August 2004), pp. 125-139.
[8] A. Di Nola, R. Grigolia, Projective MV-Algebras and Their Automorphism Groups, J. of Mult.-Valued Logic \& Soft Computing., Vol. 9 (2003), pp. 291-317.
[9] A. Di Nola, R. Grigolia, Gdel spaces and perfect MV-algebras, Journal of Applied Logic, Volume 13, Issue 3, 2015, pp. 270284. http://dx.doi.org/10.1016/j.jal.2015.05.001
[10] A. Di Nola, A. Lettieri, Perfect MV-algebras are Categorically Equivalent to Abelian ℓ-Groups, Studia Logica, 53(1994), 417-432.
[11] S. Ghilardi, Unification through projectivity, J. Logic Comput., 7(6),733-752, 1997.
[12] G. Georgescu, A. Iurgulescu, I. Leustean, Monadic and Closure MVAlgebras, Multi. Val. Logic 3 (1998) 235-257.
[13] R. Grigolia, Free algebras of non-classical logics, Monograph, "Metsniereba", Tbilisi, 110 pp.(1987) (Russian) (Math. Review: 89c: 00008)
[14] R. Grigolia, Finitely generated free $S 4.3$-algebras, Studies on nonclassical logics and formal systems, Nauka, Moscow, 281286 (1983) (Russian).
[15] L.S. Hay, An axiomatization of the infinitely many-valued calculus, M.S. Thesis, Cornell University, 1958.
[16] J. Łukasiewicz, A. Tarski, Untersuchungen über den Aussagenkalkul, Comptes Rendus des seances de la Societe des Sciences et des Lettres de Varsovie 23 (cl iii) (1930) 30-50.
[17] R. McKenzie, An algebraic version of categorical equivalence for varieties and more general algebraic categories, pp. 221-243, in Logic and Algebra, edited by P. Aglianò and A. Ursini, volume 180 of Lectures Notes in Pure and Applied Mathematics, Marcel Dekker, Dedicated to Roberto Magari, 1996.
[18] D. Mundici, Interpretation of AF C ${ }^{*}$-Algebras in Lukasiewicz Sentential Calculus, J. Funct. Analysis 65, (1986), 15-63.
[19] R. W. Quackenbush, Demi-Semi-Primal Algebras and Malcev-Type Conditions, Mathematische Zeithschrift vol.122, 1971, pp. 177188.
[20] J.D. Rutledge, A preliminary investigation of the infinitely many-valued predicate calculus, Ph.D. Thesis, Cornell University, 1959.
[21] B. Scarpellini, Die Nichtaxiomatisierbarkeit des unendlichwertigen Prädikaten-kalkül von Łukasiewicz, J. Symbolic Logic 27 (1962) 159170.
[22] D. Schwartz, Theorie der polyadischen MV-Algebren endlicher Ordnung, Math. Nachr. 78 (1977) 131-138.
[23] D. Schwartz, Polyadic MV-algebras, Zeit. f. math. Logik und Grundlagen d. Math. 26 (1980) 561-564.

[^0]: ${ }^{1}$ Department of Mathematics, University of Salerno. e-mail: adinola@unisa.it
 ${ }^{2}$ Tbilisi State University, e-mail: revaz.grigolia@tsu.ge, revaz.grigolia359@gmail.com
 ${ }^{3}$ Georgian Technical University, Institute of Cybernetics, e-mail: r.liparteliani@yahoo.com

