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Abstract. This note presents some calculation of the Hilbert series related

to Morava K(2)∗-theory rings of classifying spaces of some 2-groups.

1. Introduction

This is a joint project with M. Bakuradze in preparation. The author takes this
opportunity as a participant of Fourth Annual Conference in Exact and Natural
Sciences Dedicated to 140th Anniversary of the Birth of Ivane Javakhishvili to
present some examples and calculations in more details.

A commutative ring R is called N -graded if it has a direct sum decomposition
R = ⊕iRi (that is, the Ri are additive subgroups, and every element r of R can be
written in a unique way as finite sum r = r1+· · ·+rm, where the rj are nonzero and
belong to distinct Ri) and moreover RiRj ⊆ Ri+j . Elements that belong to one of
the Ri are called homogeneous. The rj that occur in the unique representation of
r are called the homogeneous components of r.

Consider the situation of a N -graded k-algebra R: all Ri are vector spaces
over a field k. For N graded R module M put H(M, t) =

∑
i H(M, i)ti where

H(M, i) = dimkMi. The function H(M, .) : N → N is called the Hilbert function
of M . Here are some examples

R = k H(R, t) = 1.

R = k[x] H(R, t) = 1 + t + t2 + · · · = 1/(1− t).

R = k[x, y] H(R, t) = 1 + 2t + 3t2 + 4t3 + · · · = 1/(1− t)2.

R = k[x1, · · · , xm] H(R, t) = 1/(1− t)m.

R = k[x, y]/(xy) H(R, t) = 1 + 2t + 2t2 + 2t3 + · · · = (1 + t)/(1− t).

R = k[x, y]/(x2 + y2) H(R, t) = 1 + 2t + 2t2 + 2t3 + · · · = (1 + t)/(1− t).

The last two examples show that non-isomorphic graded k-algebras can have the
same Hilbert series.

In our situation of K∗(2)(BG) the naive definition of HP (t) does not work as
there are the elements of negative degree in the ring of coefficients K(2)∗. That is
the relations ideal I is not homogeneous with respect to variables x1, · · ·xn, hence
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the quotient ring is not graded (but filtered). So we have to reduce the definition
to graded algebra case. In such situations the following definition is used [8]. Let
I be an ideal of a polynomial ring k[x1, · · · , xn] over a field k, and let > be a
global monomial ordering. The ring k[x1, · · · , xn]/I is a filtered algebra, however
its Hilbert-Poincare series w.r.t > is defined as follows. Replace I by its leading
ideal L(I) := L>(I) = (L>(f)|f ∈ I) ⊂ k[x1, · · · , xn], that is L(I) is generated by
leading terms of the elements of I. Then the ring k[x1, · · · , xn]/L>(I) is a graded
ring. By definition HP (t, k[x1, · · · , xn]/I) = HP (t, k[x1, · · · , xn]/L>(I)) w.r.t. >.

In this case Hilbert series are actually the polynomials because K(s)∗(BG) are
finite dimensional K(s)∗-vector space for finite group G.

2. Our examples

In [7] all groups of order 32 are listed and numbered by 1, · · · , 51. For the groups
G34, · · · , G41, the dihedral group, the quasi-dihedral group, the semi-dihedral group,
the generalized quaternion group, the rings K(s)∗(BG) are calculated in [1], [5],
[4], [6] and [3]. Because of complexity of these rings we need a simple but still
informative numerical invariants such as Hilbert-Poincare series.

We consider in details the groups G34 and its non-split version G35. The other
examples can be treated similarly. Recall the following presentations

G34 = 〈a,b, c | a4 = b4 = c2 = [a,b] = 1, cac = a−1, cbc = b−1〉,
G35 = 〈a,b, c | a4 = b4 = [a,b] = 1, c2 = a2, cac−1 = a−1, cbc−1 = b−1〉.

Proposition 2.1. One has K(2)∗(BG34) ∼= K(2)∗[a, b, c, x1, y1, x2, y2, T ]/I, where
|a| = |b| = |c| = |x1| = |y1| = 1, |x2| = |y2| = |T | = 2 and the relations ideal I is as
follows

I = (a4, b4, c4, c + x1 + vx2
2 + v3x1

2x2
4, y1 + c + vy2

2 + v3y1
2y2

4, c(c + x1 +
vc2x2), c(c+y1 +vc2y2), a(a+x1 +va2x2), b(b+y1 +vb2y2), v2y2

4 + b2 + bc, v2x2
4 +

a2 + ac, (c+ x1 + vc2x2)(b+ y1 + vb2y2) + vb3T, (c+ y1 + vc2y2)(a+ x1 + va2x2) +
va3T, T 2 +Tx1y1 +x2y1(c+y1 +vc2y2) +x1y2(c+x1 +vc2x2), T (a+x1 +va2x2) +
va3x2(c + y1), T (b + y1 + vb2y2) + vb3y2(c + x1), cT );

Here our base field is the graded field K(2)∗(pt) = F2[v.v−1], |v| = −3. Our
filtered ring K(2)(BG34) is the vector space over K∗(2)(pt) of dimension 184. This
can be checked by SINGULAR [8] code

> ring R = (2, v), (list of variables), (a(−3, list of weights), dp);

> ideal I = (list of ideal generators);

> vdim(std(I));

> 184
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Proposition 2.2. Hilbert polynomial H(t) of K(2)∗(BG), for G = G34, G35 w.r.t.
(a, b, c, y1, x1, y2, x2, T ), (1, 1, 1, 1, 1, 2, 2, 2), dp is given by

H(t) = t12+4t11+7t10+12t9+14t8+17t7+23t6+27t5+32t4+25t3+16t2+5t+1.

Proof. In principle the Hilbert function, that is, the number of n-weighted basis
elements can be read off from Proposition 2.1. On the other hand this can be easily
checked in two ways. First way is to calculate Hilbert function H(n) by SINGULAR
code

> ring R = (2, v), (variables), (a(−3, weights), dp);

> weightedKB(std(I), n, intvec(weights), intvec(−3));

Alternatively one can first compute the so called first Hilbert series Q(t) by code
> hilb(std(I), 1, intvec(1, 1, 1, 1, 1, 2, 2, 2, )) and then use the celebrated formula

H(t) =
Q(t)

(1− twi)
,

relating Hilbert first series with Hilbert-Poincare series (Hilbert second series). Here
wi are weights of the variables. In our case the variables in Proposition 2.1 have
weights (1, 1, 1, 1, 1, 2, 2, 2), therefore one has in our case

H(t) =
Q(t)

(1− t)5(1− t2)3
.

Then SINGULAR returns

Q(t) =1− 2t2 − 15t3 + 22t4 + 26t5 − 31t6 − 27t7 − 10t8 + 60t9 + 10t10 − 42t11

+ 8t12 − 28t13 + 32t14 + 18t15 − 31t16 + 12t17 − 8t18 + t19 + 10t20

− 6t21 − t22 + t23.

Factorizing Q(t) one has

Q(t) =(t− 1)8(t + 1)3(t12 + 4t11 + 7t10 + 12t9 + 14t8 + 17t7 + 23t6 + 27t5

+ 32t4 + 25t3 + 16t2 + 5t).

Thus we obtain H(t) as claimed for G34.
For G35, the non-split version of G34, we have the following relations ideal
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I =(a4, b4, c4, c + x1 + vx2
2 + v2x2

1x
4
2, y1 + vy22 + v3y21y

4
2 ,

c(c + x1 + vc2x2), c(c + y1 + vc2y2), a(a + x1 + va2x2), b(b + y1 + vb2y2),

v2y42 + b2 + bc + c2, v2x4
2 + a2 + ac, (c + x1 + vc2x2)(b + y1 + vb2y2) + vb3T,

(c + y1 + vc2y2)(a + x1 + va2x2) + va3T,

T 2 + Tx1y1 + x2y1(c + y1 + vc2y2) + x1y2(c + x1 + vc2x2),

T (a + x1 + va2x2) + va3x2(c + y1), T (b + y1 + vb2y2) + vb3y2(c + x1), cT ).

Here the variables have the same weights as in Proposition 2.1. The ring struc-
ture is not isomorphic to what we had in the case of G34. However K(2)∗(BG35)
has the same Hilbert-Poincare series. This is not so surprising: the Serre spectral
sequence for K(2)∗(BG) does not see the difference between the group G35 and its
non-split version of G34.

�
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