HILBERT FUNCTIONS OF MORAVA $K(2)^{*}$-THEORY RINGS OF SOME 2-GROUPS

NATIA GACHECHILADZE

Abstract

This note presents some calculation of the Hilbert series related to Morava $K(2)^{*}$-theory rings of classifying spaces of some 2-groups.

1. Introduction

This is a joint project with M. Bakuradze in preparation. The author takes this opportunity as a participant of Fourth Annual Conference in Exact and Natural Sciences Dedicated to 140th Anniversary of the Birth of Ivane Javakhishvili to present some examples and calculations in more details.

A commutative ring R is called N-graded if it has a direct sum decomposition $R=\oplus_{i} R_{i}$ (that is, the R_{i} are additive subgroups, and every element r of R can be written in a unique way as finite sum $r=r_{1}+\cdots+r_{m}$, where the r_{j} are nonzero and belong to distinct R_{i}) and moreover $R_{i} R_{j} \subseteq R_{i+j}$. Elements that belong to one of the R_{i} are called homogeneous. The r_{j} that occur in the unique representation of r are called the homogeneous components of r.

Consider the situation of a N-graded k-algebra R : all R_{i} are vector spaces over a field k. For N graded R module M put $H(M, t)=\sum_{i} H(M, i) t^{i}$ where $H(M, i)=\operatorname{dim}_{k} M_{i}$. The function $H(M,):. N \rightarrow N$ is called the Hilbert function of M. Here are some examples

$$
\begin{array}{ll}
R=k & H(R, t)=1 . \\
R=k[x] & H(R, t)=1+t+t^{2}+\cdots=1 /(1-t) . \\
R=k[x, y] & H(R, t)=1+2 t+3 t^{2}+4 t^{3}+\cdots=1 /(1-t)^{2} . \\
R=k\left[x_{1}, \cdots, x_{m}\right] & H(R, t)=1 /(1-t)^{m} . \\
R=k[x, y] /(x y) & H(R, t)=1+2 t+2 t^{2}+2 t^{3}+\cdots=(1+t) /(1-t) . \\
R=k[x, y] /\left(x^{2}+y^{2}\right) & H(R, t)=1+2 t+2 t^{2}+2 t^{3}+\cdots=(1+t) /(1-t) .
\end{array}
$$

The last two examples show that non-isomorphic graded k-algebras can have the same Hilbert series.

In our situation of $K^{*}(2)(B G)$ the naive definition of $H P(t)$ does not work as there are the elements of negative degree in the ring of coefficients $K(2)^{*}$. That is the relations ideal I is not homogeneous with respect to variables $x_{1}, \cdots x_{n}$, hence

[^0]the quotient ring is not graded (but filtered). So we have to reduce the definition to graded algebra case. In such situations the following definition is used [8]. Let I be an ideal of a polynomial ring $k\left[x_{1}, \cdots, x_{n}\right]$ over a field k, and let $>$ be a global monomial ordering. The ring $k\left[x_{1}, \cdots, x_{n}\right] / I$ is a filtered algebra, however its Hilbert-Poincare series w.r.t $>$ is defined as follows. Replace I by its leading ideal $L(I):=L_{>}(I)=\left(L_{>}(f) \mid f \in I\right) \subset k\left[x_{1}, \cdots, x_{n}\right]$, that is $L(I)$ is generated by leading terms of the elements of I. Then the ring $k\left[x_{1}, \cdots, x_{n}\right] / L_{>}(I)$ is a graded ring. By definition $H P\left(t, k\left[x_{1}, \cdots, x_{n}\right] / I\right)=H P\left(t, k\left[x_{1}, \cdots, x_{n}\right] / L_{>}(I)\right)$ w.r.t. $>$.

In this case Hilbert series are actually the polynomials because $K(s)^{*}(B G)$ are finite dimensional $K(s)^{*}$-vector space for finite group G.

2. OUR EXAMPles

In [7] all groups of order 32 are listed and numbered by $1, \cdots, 51$. For the groups G_{34}, \cdots, G_{41}, the dihedral group, the quasi-dihedral group, the semi-dihedral group, the generalized quaternion group, the rings $K(s)^{*}(B G)$ are calculated in [1], [5], [4], [6] and [3]. Because of complexity of these rings we need a simple but still informative numerical invariants such as Hilbert-Poincare series.

We consider in details the groups G_{34} and its non-split version G_{35}. The other examples can be treated similarly. Recall the following presentations

$$
\begin{aligned}
G_{34} & =\left\langle\mathbf{a}, \mathbf{b}, \mathbf{c} \mid \mathbf{a}^{4}=\mathbf{b}^{4}=\mathbf{c}^{2}=[\mathbf{a}, \mathbf{b}]=1, \mathbf{c a c}=\mathbf{a}^{-1}, \mathbf{c b c}=\mathbf{b}^{-1}\right\rangle \\
G_{35} & =\left\langle\mathbf{a}, \mathbf{b}, \mathbf{c} \mid \mathbf{a}^{4}=\mathbf{b}^{4}=[\mathbf{a}, \mathbf{b}]=1, \mathbf{c}^{2}=\mathbf{a}^{2}, \mathbf{c a c}^{-1}=\mathbf{a}^{-1}, \mathbf{c b}^{-1}=\mathbf{b}^{-1}\right\rangle
\end{aligned}
$$

Proposition 2.1. One has $K(2)^{*}\left(B G_{34}\right) \cong K(2)^{*}\left[a, b, c, x_{1}, y_{1}, x_{2}, y_{2}, T\right] / I$, where $|a|=|b|=|c|=\left|x_{1}\right|=\left|y_{1}\right|=1,\left|x_{2}\right|=\left|y_{2}\right|=|T|=2$ and the relations ideal I is as follows
$I=\left(a^{4}, b^{4}, c^{4}, c+x_{1}+v x_{2}^{2}+v^{3} x_{1}^{2} x_{2}^{4}, y_{1}+c+v y_{2}^{2}+v^{3} y_{1}^{2} y_{2}^{4}, c\left(c+x_{1}+\right.\right.$ $\left.v c^{2} x_{2}\right), c\left(c+y_{1}+v c^{2} y_{2}\right), a\left(a+x_{1}+v a^{2} x_{2}\right), b\left(b+y_{1}+v b^{2} y_{2}\right), v^{2} y_{2}{ }^{4}+b^{2}+b c, v^{2} x_{2}^{4}+$ $a^{2}+a c,\left(c+x_{1}+v c^{2} x_{2}\right)\left(b+y_{1}+v b^{2} y_{2}\right)+v b^{3} T,\left(c+y_{1}+v c^{2} y_{2}\right)\left(a+x_{1}+v a^{2} x_{2}\right)+$ $v a^{3} T, T^{2}+T x_{1} y_{1}+x_{2} y_{1}\left(c+y_{1}+v c^{2} y_{2}\right)+x_{1} y_{2}\left(c+x_{1}+v c^{2} x_{2}\right), T\left(a+x_{1}+v a^{2} x_{2}\right)+$ $\left.v a^{3} x_{2}\left(c+y_{1}\right), T\left(b+y_{1}+v b^{2} y_{2}\right)+v b^{3} y_{2}\left(c+x_{1}\right), c T\right)$;

Here our base field is the graded field $K(2)^{*}(p t)=F_{2}\left[v \cdot v^{-1}\right],|v|=-3$. Our filtered ring $K(2)\left(B G_{34}\right)$ is the vector space over $K^{*}(2)(p t)$ of dimension 184. This can be checked by SINGULAR [8] code

```
>ring}R=(2,v),(list of variables),(a(-3,list of weights),dp)
> ideal I = (list of ideal generators);
>vdim(std(I));
> 184
```

Proposition 2.2. Hilbert polynomial $H(t)$ of $K(2)^{*}(B G)$, for $G=G_{34}, G_{35}$ w.r.t. $\left(a, b, c, y_{1}, x_{1}, y_{2}, x_{2}, T\right),(1,1,1,1,1,2,2,2), d p$ is given by
$H(t)=t^{12}+4 t^{11}+7 t^{10}+12 t^{9}+14 t^{8}+17 t^{7}+23 t^{6}+27 t^{5}+32 t^{4}+25 t^{3}+16 t^{2}+5 t+1$.
Proof. In principle the Hilbert function, that is, the number of n-weighted basis elements can be read off from Proposition 2.1. On the other hand this can be easily checked in two ways. First way is to calculate Hilbert function $H(n)$ by SINGULAR code

$$
\begin{aligned}
& >\text { ring } R=(2, v),(\text { variables }),(a(-3, \text { weights }), d p) \\
& >\text { weightedK } B(\operatorname{std}(I), n, \text { intvec }(\text { weights }), \text { intvec }(-3))
\end{aligned}
$$

Alternatively one can first compute the so called first Hilbert series $Q(t)$ by code $>\operatorname{hilb}(\operatorname{std}(I), 1, \operatorname{intvec}(1,1,1,1,1,2,2,2)$,$) and then use the celebrated formula$

$$
H(t)=\frac{Q(t)}{\left(1-t^{w_{i}}\right)}
$$

relating Hilbert first series with Hilbert-Poincare series (Hilbert second series). Here w_{i} are weights of the variables. In our case the variables in Proposition 2.1 have weights $(1,1,1,1,1,2,2,2)$, therefore one has in our case

$$
H(t)=\frac{Q(t)}{(1-t)^{5}\left(1-t^{2}\right)^{3}} .
$$

Then SINGULAR returns

$$
\begin{aligned}
Q(t)= & 1-2 t^{2}-15 t^{3}+22 t^{4}+26 t^{5}-31 t^{6}-27 t^{7}-10 t^{8}+60 t^{9}+10 t^{10}-42 t^{11} \\
& +8 t^{12}-28 t^{13}+32 t^{14}+18 t^{15}-31 t^{16}+12 t^{17}-8 t^{18}+t^{19}+10 t^{20} \\
& -6 t^{21}-t^{22}+t^{23}
\end{aligned}
$$

Factorizing $Q(t)$ one has

$$
\begin{aligned}
Q(t)= & (t-1)^{8}(t+1)^{3}\left(t^{12}+4 t^{11}+7 t^{10}+12 t 9+14 t^{8}+17 t^{7}+23 t^{6}+27 t^{5}\right. \\
& \left.+32 t^{4}+25 t^{3}+16 t^{2}+5 t\right)
\end{aligned}
$$

Thus we obtain $H(t)$ as claimed for G_{34}.
For G_{35}, the non-split version of G_{34}, we have the following relations ideal

$$
\begin{aligned}
I= & \left(a^{4}, b^{4}, c^{4}, c+x_{1}+v x_{2}^{2}+v^{2} x_{1}^{2} x_{2}^{4}, y_{1}+v y_{2}^{2}+v^{3} y_{1}^{2} y_{2}^{4},\right. \\
& c\left(c+x_{1}+v c^{2} x_{2}\right), c\left(c+y_{1}+v c^{2} y_{2}\right), a\left(a+x_{1}+v a^{2} x_{2}\right), b\left(b+y_{1}+v b^{2} y_{2}\right), \\
& v^{2} y_{2}^{4}+b^{2}+b c+c^{2}, v^{2} x_{2}^{4}+a^{2}+a c,\left(c+x_{1}+v c^{2} x_{2}\right)\left(b+y_{1}+v b^{2} y_{2}\right)+v b^{3} T, \\
& \left(c+y_{1}+v c^{2} y_{2}\right)\left(a+x_{1}+v a^{2} x_{2}\right)+v a^{3} T, \\
& T^{2}+T x_{1} y_{1}+x_{2} y_{1}\left(c+y_{1}+v c^{2} y_{2}\right)+x_{1} y_{2}\left(c+x_{1}+v c^{2} x_{2}\right), \\
& \left.T\left(a+x_{1}+v a^{2} x_{2}\right)+v a^{3} x_{2}\left(c+y_{1}\right), T\left(b+y_{1}+v b^{2} y_{2}\right)+v b^{3} y_{2}\left(c+x_{1}\right), c T\right) .
\end{aligned}
$$

Here the variables have the same weights as in Proposition 2.1. The ring structure is not isomorphic to what we had in the case of G_{34}. However $K(2)^{*}\left(B G_{35}\right)$ has the same Hilbert-Poincare series. This is not so surprising: the Serre spectral sequence for $K(2)^{*}(B G)$ does not see the difference between the group G_{35} and its non-split version of G_{34}.

References

1. M. Bakuradze : Morava K-theory rings for a quasi-dihedral group in Chern classes, Proc. Steklov Inst. of Math. 252(2006), 23-29 .
2. M. Bakuradze : Morava K-theory rings for the modular groups in Chern classes, K-theory, 38, 2(2008), 87-94.
3. M. Bakuradze : Induced representations, Transferred Chern classes and Morava rings $K(s)^{*}(B G)$: some calculations, Proc. Steklov Inst. of Math. 275(2011), 160-168.
4. M. Bakuradze, N. Gachechiladze: Morava K-theory rings of the extensions of C_{2} by the products of cyclic 2-groups, Moscow Math. J., 16(4) (2016), 603-619, arXiv:1412.2674 [math.AT].
5. M. Bakuradze, M. Jibladze : Morava K-theory rings of groups G_{38}, \ldots, G_{41} of order 32, J. K-Theory, 13(2014), 171-198
6. M. Bakuradze, V.V. Vershinin : Morava K-theory rings for the dihedral, semi-dihedral and generalized quaternion groups in Chern Classes, Proc. Amer. Math. Soc., 134(2006), 37073714 .
7. M. Hall and J.K. Senior : The groups of order 2^{n}, $n \leq 6$, The Macmillan Co., New York; Collier-Macmillan, Ltd., London 1964.
8. Decker, W.; Greuel, G.-M.; Pfister, G.; Schönemann, H.: Singular 4-0-2 - A computer algebra system for polynomial computations. http://www.singular.uni-kl.de (2015).
Iv. Javakhishvili Tbilisi State University, Faculty of Exact and Natural Sciences E-mail address: natia.gachechiladze@tsu.ge

[^0]: 2010 Mathematics Subject Classification. 55N20; 55R12; 55R40.
 Key words and phrases. Hilbert polynomial, Morava K-theory.
 The author where supported by Shota Rustaveli National Science Foundation Grant 217614.

