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Definition 1. Let ( )n  and ( )nS  be a sequence of real numbers, where 1,n   ,n  and  
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It is clear that 0 .n nS   If ( )n  is a constant sequence ( , )n n    then n

n
 coincides with the usual 

Cesáro n
 -means [3]. These means were studied by Kaplan [2]. If in (1) instead of S we substitute 

( , )S f x partial sums of the Fourier series of a function f with respect to the trigonometric system then the 

corresponding means n
  is denoted by ( , )n

n f x  and we shall call them by Cesáro means.  

Definition 2. Let   be an increasing sequence, (1) 2   and  lim ( )
n

n


  . Suppose f  be a measurable 

2 -periodic function defined on ( , )  . Let ( )p n  be an icreasing sequence for wich 1 ( )p n p  , 

1, 2...,n  1 p   . We say that a function f  belongs to the class  ( ) ,B p n p    if 
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This class is introduced in [1] and studied the properties of this class when .p    It is found that in the 

case 1 p    class  ( ) ,B p n p     has the different properties. In particular, it is proved:  

1. If  (1, )p  then class  ( ) ,B p n p   does not depend on function  ; 

2. Every class  ( ) ,B p n p   containes a function which is not essentially bounded. 

Besides, the behaviour of generalized Cesáro means in the space of continuous functions are investigated. 
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