Some remarks on classes of functions of generalized bounded variation

Teimuraz Akhobadze and Shalva Zviadadze

e-mail: t.akhobadze@tsu.ge, sh.zviadadze@tsu.ge

Departament of mathematics, Faculty of exact and natural sciences,

Ivane Javakhishvili Tbilisi state university,

Address: 1, Chavchavadze Ave., 0179 Tbilisi, Georgia

Definition 1. Let (α_n) and (S_n) be a sequence of real numbers, where $\alpha_n > 1$, $n \in \mathbb{N}$, and

$$\sigma_n^{\alpha_n} \equiv \sum_{\nu=0}^n A_{n-\nu}^{\alpha_n-1} S_{\nu} / A_n^{\alpha_n}, \qquad A_k^{\alpha_n} = (\alpha_n + 1) \cdot \dots \cdot (\alpha_n + k) / k!.$$
(1)

It is clear that $\sigma_n^0 = S_n$. If (α_n) is a constant sequence $(\alpha_n = \alpha, n \in \mathbb{N})$ then $\sigma_n^{\alpha_n}$ coincides with the usual Cesáro σ_n^{α} -means [3]. These means were studied by Kaplan [2]. If in (1) instead of S_v we substitute $S_v(f, x)$ partial sums of the Fourier series of a function f with respect to the trigonometric system then the corresponding means σ_n^{α} is denoted by $\sigma_n^{\alpha_n}(f, x)$ and we shall call them by Cesáro means. **Definition 2.** Let φ be an increasing sequence, $\varphi(1) \ge 2$ and $\lim_{n \to \infty} \varphi(n) = +\infty$. Suppose f be a measurable 2π -periodic function defined on $(-\infty, +\infty)$. Let p(n) be an icreasing sequence for wich $1 \le p(n) \uparrow p$,

 $n = 1, 2..., 1 \le p \le +\infty$. We say that a function f belongs to the class $B\Lambda(p(n) \uparrow p, \varphi)$ if

$$\sup_{m} \sup_{h \ge 1/\varphi(m)} \left\{ \frac{1}{h} \int_{0}^{2\pi} \left| f(x+h) - f(x) \right|^{p(m)} dx \right\}^{1/p(m)} < \infty$$

This class is introduced in [1] and studied the properties of this class when $p = +\infty$. It is found that in the case $1 class <math>B\Lambda(p(n) \uparrow p, \varphi)$ has the different properties. In particular, it is proved:

- 1. If $p \in (1, +\infty)$ then class $B\Lambda(p(n) \uparrow p, \varphi)$ does not depend on function φ ;
- 2. Every class $B\Lambda(p(n)\uparrow p, \varphi)$ containes a function which is not essentially bounded.

Besides, the behaviour of generalized Cesáro means in the space of continuous functions are investigated.

References

[1] T. Akhobadze, A generalization of bounded variation, Acta Math. Hungar. 97 (3) (2002), 223-256.

[2] I. Kaplan, Cesáro means of variable order, Izv. Vys. Uchebn. Zaved. Mat., 18 (1960), no. 5, 62 -- 73. (Russian)

[3] A. Zygmund, Trigonometric series, Cambridge University Press, Vol.1 (1959).